|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Literal |
|
|
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.embeddings import PixArtAlphaTextProjection |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.normalization import AdaLayerNormSingle |
|
from diffusers.utils import BaseOutput, is_torch_version |
|
from diffusers.utils import logging |
|
from torch import nn |
|
|
|
from xora.models.transformers.attention import BasicTransformerBlock |
|
from xora.models.transformers.embeddings import get_3d_sincos_pos_embed |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class Transformer3DModelOutput(BaseOutput): |
|
""" |
|
The output of [`Transformer2DModel`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): |
|
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability |
|
distributions for the unnoised latent pixels. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class Transformer3DModel(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
num_vector_embeds: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
adaptive_norm: str = "single_scale_shift", |
|
standardization_norm: str = "layer_norm", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
attention_type: str = "default", |
|
caption_channels: int = None, |
|
project_to_2d_pos: bool = False, |
|
use_tpu_flash_attention: bool = False, |
|
qk_norm: Optional[str] = None, |
|
positional_embedding_type: str = "absolute", |
|
positional_embedding_theta: Optional[float] = None, |
|
positional_embedding_max_pos: Optional[List[int]] = None, |
|
timestep_scale_multiplier: Optional[float] = None, |
|
): |
|
super().__init__() |
|
self.use_tpu_flash_attention = ( |
|
use_tpu_flash_attention |
|
) |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
self.inner_dim = inner_dim |
|
|
|
self.project_to_2d_pos = project_to_2d_pos |
|
|
|
self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True) |
|
|
|
self.positional_embedding_type = positional_embedding_type |
|
self.positional_embedding_theta = positional_embedding_theta |
|
self.positional_embedding_max_pos = positional_embedding_max_pos |
|
self.use_rope = self.positional_embedding_type == "rope" |
|
self.timestep_scale_multiplier = timestep_scale_multiplier |
|
|
|
if self.positional_embedding_type == "absolute": |
|
embed_dim_3d = ( |
|
math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim |
|
) |
|
if self.project_to_2d_pos: |
|
self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False) |
|
self._init_to_2d_proj_weights(self.to_2d_proj) |
|
elif self.positional_embedding_type == "rope": |
|
if positional_embedding_theta is None: |
|
raise ValueError( |
|
"If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined" |
|
) |
|
if positional_embedding_max_pos is None: |
|
raise ValueError( |
|
"If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined" |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
double_self_attention=double_self_attention, |
|
upcast_attention=upcast_attention, |
|
adaptive_norm=adaptive_norm, |
|
standardization_norm=standardization_norm, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
attention_type=attention_type, |
|
use_tpu_flash_attention=use_tpu_flash_attention, |
|
qk_norm=qk_norm, |
|
use_rope=self.use_rope, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter( |
|
torch.randn(2, inner_dim) / inner_dim**0.5 |
|
) |
|
self.proj_out = nn.Linear(inner_dim, self.out_channels) |
|
|
|
self.adaln_single = AdaLayerNormSingle( |
|
inner_dim, use_additional_conditions=False |
|
) |
|
if adaptive_norm == "single_scale": |
|
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True) |
|
|
|
self.caption_projection = None |
|
if caption_channels is not None: |
|
self.caption_projection = PixArtAlphaTextProjection( |
|
in_features=caption_channels, hidden_size=inner_dim |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def set_use_tpu_flash_attention(self): |
|
r""" |
|
Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU |
|
attention kernel. |
|
""" |
|
logger.info(" ENABLE TPU FLASH ATTENTION -> TRUE") |
|
|
|
if self.device.type == "xla": |
|
self.use_tpu_flash_attention = True |
|
|
|
for block in self.transformer_blocks: |
|
block.set_use_tpu_flash_attention(self.device.type) |
|
|
|
def initialize(self, embedding_std: float, mode: Literal["xora", "legacy"]): |
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
|
|
self.apply(_basic_init) |
|
|
|
|
|
nn.init.normal_( |
|
self.adaln_single.emb.timestep_embedder.linear_1.weight, std=embedding_std |
|
) |
|
nn.init.normal_( |
|
self.adaln_single.emb.timestep_embedder.linear_2.weight, std=embedding_std |
|
) |
|
nn.init.normal_(self.adaln_single.linear.weight, std=embedding_std) |
|
|
|
if hasattr(self.adaln_single.emb, "resolution_embedder"): |
|
nn.init.normal_( |
|
self.adaln_single.emb.resolution_embedder.linear_1.weight, |
|
std=embedding_std, |
|
) |
|
nn.init.normal_( |
|
self.adaln_single.emb.resolution_embedder.linear_2.weight, |
|
std=embedding_std, |
|
) |
|
if hasattr(self.adaln_single.emb, "aspect_ratio_embedder"): |
|
nn.init.normal_( |
|
self.adaln_single.emb.aspect_ratio_embedder.linear_1.weight, |
|
std=embedding_std, |
|
) |
|
nn.init.normal_( |
|
self.adaln_single.emb.aspect_ratio_embedder.linear_2.weight, |
|
std=embedding_std, |
|
) |
|
|
|
|
|
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std) |
|
nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std) |
|
|
|
for block in self.transformer_blocks: |
|
if mode.lower() == "xora": |
|
nn.init.constant_(block.attn1.to_out[0].weight, 0) |
|
nn.init.constant_(block.attn1.to_out[0].bias, 0) |
|
|
|
nn.init.constant_(block.attn2.to_out[0].weight, 0) |
|
nn.init.constant_(block.attn2.to_out[0].bias, 0) |
|
|
|
if mode.lower() == "xora": |
|
nn.init.constant_(block.ff.net[2].weight, 0) |
|
nn.init.constant_(block.ff.net[2].bias, 0) |
|
|
|
|
|
nn.init.constant_(self.proj_out.weight, 0) |
|
nn.init.constant_(self.proj_out.bias, 0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
@staticmethod |
|
def _init_to_2d_proj_weights(linear_layer): |
|
input_features = linear_layer.weight.data.size(1) |
|
output_features = linear_layer.weight.data.size(0) |
|
|
|
|
|
identity_like = torch.zeros((output_features, input_features)) |
|
|
|
|
|
min_features = min(output_features, input_features) |
|
identity_like[:min_features, :min_features] = torch.eye(min_features) |
|
linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device) |
|
|
|
def get_fractional_positions(self, indices_grid): |
|
fractional_positions = torch.stack( |
|
[ |
|
indices_grid[:, i] / self.positional_embedding_max_pos[i] |
|
for i in range(3) |
|
], |
|
dim=-1, |
|
) |
|
return fractional_positions |
|
|
|
def precompute_freqs_cis(self, indices_grid, spacing="exp"): |
|
dtype = torch.float32 |
|
dim = self.inner_dim |
|
theta = self.positional_embedding_theta |
|
|
|
fractional_positions = self.get_fractional_positions(indices_grid) |
|
|
|
start = 1 |
|
end = theta |
|
device = fractional_positions.device |
|
if spacing == "exp": |
|
indices = theta ** ( |
|
torch.linspace( |
|
math.log(start, theta), |
|
math.log(end, theta), |
|
dim // 6, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
) |
|
indices = indices.to(dtype=dtype) |
|
elif spacing == "exp_2": |
|
indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim) |
|
indices = indices.to(dtype=dtype) |
|
elif spacing == "linear": |
|
indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype) |
|
elif spacing == "sqrt": |
|
indices = torch.linspace( |
|
start**2, end**2, dim // 6, device=device, dtype=dtype |
|
).sqrt() |
|
|
|
indices = indices * math.pi / 2 |
|
|
|
if spacing == "exp_2": |
|
freqs = ( |
|
(indices * fractional_positions.unsqueeze(-1)) |
|
.transpose(-1, -2) |
|
.flatten(2) |
|
) |
|
else: |
|
freqs = ( |
|
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1)) |
|
.transpose(-1, -2) |
|
.flatten(2) |
|
) |
|
|
|
cos_freq = freqs.cos().repeat_interleave(2, dim=-1) |
|
sin_freq = freqs.sin().repeat_interleave(2, dim=-1) |
|
if dim % 6 != 0: |
|
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6]) |
|
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6]) |
|
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1) |
|
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1) |
|
return cos_freq.to(self.dtype), sin_freq.to(self.dtype) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
indices_grid: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`Transformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): |
|
Input `hidden_states`. |
|
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`): |
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in |
|
`AdaLayerZeroNorm`. |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
attention_mask ( `torch.Tensor`, *optional*): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
|
|
if not self.use_tpu_flash_attention: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: |
|
encoder_attention_mask = ( |
|
1 - encoder_attention_mask.to(hidden_states.dtype) |
|
) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
hidden_states = self.patchify_proj(hidden_states) |
|
|
|
if self.timestep_scale_multiplier: |
|
timestep = self.timestep_scale_multiplier * timestep |
|
|
|
if self.positional_embedding_type == "absolute": |
|
pos_embed_3d = self.get_absolute_pos_embed(indices_grid).to( |
|
hidden_states.device |
|
) |
|
if self.project_to_2d_pos: |
|
pos_embed = self.to_2d_proj(pos_embed_3d) |
|
hidden_states = (hidden_states + pos_embed).to(hidden_states.dtype) |
|
freqs_cis = None |
|
elif self.positional_embedding_type == "rope": |
|
freqs_cis = self.precompute_freqs_cis(indices_grid) |
|
|
|
batch_size = hidden_states.shape[0] |
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep.flatten(), |
|
{"resolution": None, "aspect_ratio": None}, |
|
batch_size=batch_size, |
|
hidden_dtype=hidden_states.dtype, |
|
) |
|
|
|
timestep = timestep.view(batch_size, -1, timestep.shape[-1]) |
|
embedded_timestep = embedded_timestep.view( |
|
batch_size, -1, embedded_timestep.shape[-1] |
|
) |
|
|
|
|
|
if self.caption_projection is not None: |
|
batch_size = hidden_states.shape[0] |
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.view( |
|
batch_size, -1, hidden_states.shape[-1] |
|
) |
|
|
|
for block in self.transformer_blocks: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
freqs_cis, |
|
attention_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
timestep, |
|
cross_attention_kwargs, |
|
class_labels, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states = block( |
|
hidden_states, |
|
freqs_cis=freqs_cis, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
class_labels=class_labels, |
|
) |
|
|
|
|
|
scale_shift_values = ( |
|
self.scale_shift_table[None, None] + embedded_timestep[:, :, None] |
|
) |
|
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale) + shift |
|
hidden_states = self.proj_out(hidden_states) |
|
if not return_dict: |
|
return (hidden_states,) |
|
|
|
return Transformer3DModelOutput(sample=hidden_states) |
|
|
|
def get_absolute_pos_embed(self, grid): |
|
grid_np = grid[0].cpu().numpy() |
|
embed_dim_3d = ( |
|
math.ceil((self.inner_dim / 2) * 3) |
|
if self.project_to_2d_pos |
|
else self.inner_dim |
|
) |
|
pos_embed = get_3d_sincos_pos_embed( |
|
embed_dim_3d, |
|
grid_np, |
|
h=int(max(grid_np[1]) + 1), |
|
w=int(max(grid_np[2]) + 1), |
|
f=int(max(grid_np[0] + 1)), |
|
) |
|
return torch.from_numpy(pos_embed).float().unsqueeze(0) |
|
|