ai-tube-model-ltxv-1 / xora /pipelines /pipeline_xora_video.py
daniel shalem
Bugfix: pass device type for autocast.
d675fab
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
import html
import inspect
import math
import re
import urllib.parse as ul
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from contextlib import nullcontext
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import (
BACKENDS_MAPPING,
deprecate,
is_bs4_available,
is_ftfy_available,
logging,
)
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from transformers import T5EncoderModel, T5Tokenizer
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import Patchifier
from xora.models.autoencoders.vae_encode import (
get_vae_size_scale_factor,
vae_decode,
vae_encode,
)
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.schedulers.rf import TimestepShifter
from xora.utils.conditioning_method import ConditioningMethod
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_bs4_available():
from bs4 import BeautifulSoup
if is_ftfy_available():
import ftfy
ASPECT_RATIO_1024_BIN = {
"0.25": [512.0, 2048.0],
"0.28": [512.0, 1856.0],
"0.32": [576.0, 1792.0],
"0.33": [576.0, 1728.0],
"0.35": [576.0, 1664.0],
"0.4": [640.0, 1600.0],
"0.42": [640.0, 1536.0],
"0.48": [704.0, 1472.0],
"0.5": [704.0, 1408.0],
"0.52": [704.0, 1344.0],
"0.57": [768.0, 1344.0],
"0.6": [768.0, 1280.0],
"0.68": [832.0, 1216.0],
"0.72": [832.0, 1152.0],
"0.78": [896.0, 1152.0],
"0.82": [896.0, 1088.0],
"0.88": [960.0, 1088.0],
"0.94": [960.0, 1024.0],
"1.0": [1024.0, 1024.0],
"1.07": [1024.0, 960.0],
"1.13": [1088.0, 960.0],
"1.21": [1088.0, 896.0],
"1.29": [1152.0, 896.0],
"1.38": [1152.0, 832.0],
"1.46": [1216.0, 832.0],
"1.67": [1280.0, 768.0],
"1.75": [1344.0, 768.0],
"2.0": [1408.0, 704.0],
"2.09": [1472.0, 704.0],
"2.4": [1536.0, 640.0],
"2.5": [1600.0, 640.0],
"3.0": [1728.0, 576.0],
"4.0": [2048.0, 512.0],
}
ASPECT_RATIO_512_BIN = {
"0.25": [256.0, 1024.0],
"0.28": [256.0, 928.0],
"0.32": [288.0, 896.0],
"0.33": [288.0, 864.0],
"0.35": [288.0, 832.0],
"0.4": [320.0, 800.0],
"0.42": [320.0, 768.0],
"0.48": [352.0, 736.0],
"0.5": [352.0, 704.0],
"0.52": [352.0, 672.0],
"0.57": [384.0, 672.0],
"0.6": [384.0, 640.0],
"0.68": [416.0, 608.0],
"0.72": [416.0, 576.0],
"0.78": [448.0, 576.0],
"0.82": [448.0, 544.0],
"0.88": [480.0, 544.0],
"0.94": [480.0, 512.0],
"1.0": [512.0, 512.0],
"1.07": [512.0, 480.0],
"1.13": [544.0, 480.0],
"1.21": [544.0, 448.0],
"1.29": [576.0, 448.0],
"1.38": [576.0, 416.0],
"1.46": [608.0, 416.0],
"1.67": [640.0, 384.0],
"1.75": [672.0, 384.0],
"2.0": [704.0, 352.0],
"2.09": [736.0, 352.0],
"2.4": [768.0, 320.0],
"2.5": [800.0, 320.0],
"3.0": [864.0, 288.0],
"4.0": [1024.0, 256.0],
}
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class XoraVideoPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Xora.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. This uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`Transformer2DModel`]):
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
bad_punct_regex = re.compile(
r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa
_optional_components = ["tokenizer", "text_encoder"]
model_cpu_offload_seq = "text_encoder->transformer->vae"
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKL,
transformer: Transformer3DModel,
scheduler: DPMSolverMultistepScheduler,
patchifier: Patchifier,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
patchifier=patchifier,
)
self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(
self.vae
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def mask_text_embeddings(self, emb, mask):
if emb.shape[0] == 1:
keep_index = mask.sum().item()
return emb[:, :, :keep_index, :], keep_index
else:
masked_feature = emb * mask[:, None, :, None]
return masked_feature, emb.shape[2]
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
negative_prompt: str = "",
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_attention_mask: Optional[torch.FloatTensor] = None,
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
clean_caption: bool = False,
**kwargs,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
This should be "".
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings.
clean_caption (bool, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
"""
if "mask_feature" in kwargs:
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
if device is None:
device = self._execution_device
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# See Section 3.1. of the paper.
# FIXME: to be configured in config not hardecoded. Fix in separate PR with rest of config
max_length = 128 # TPU supports only lengths multiple of 128
if prompt_embeds is None:
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt"
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[
-1
] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {max_length} tokens: {removed_text}"
)
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(device)
prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=prompt_attention_mask
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
elif self.transformer is not None:
dtype = self.transformer.dtype
else:
dtype = None
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_images_per_prompt, seq_len, -1
)
prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
prompt_attention_mask = prompt_attention_mask.view(
bs_embed * num_images_per_prompt, -1
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens = [negative_prompt] * batch_size
uncond_tokens = self._text_preprocessing(
uncond_tokens, clean_caption=clean_caption
)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
negative_prompt_attention_mask = uncond_input.attention_mask
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=negative_prompt_attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(
dtype=dtype, device=device
)
negative_prompt_embeds = negative_prompt_embeds.repeat(
1, num_images_per_prompt, 1
)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_images_per_prompt, seq_len, -1
)
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
1, num_images_per_prompt
)
negative_prompt_attention_mask = negative_prompt_attention_mask.view(
bs_embed * num_images_per_prompt, -1
)
else:
negative_prompt_embeds = None
negative_prompt_attention_mask = None
return (
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (
not isinstance(prompt, str) and not isinstance(prompt, list)
):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError(
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
)
if (
negative_prompt_embeds is not None
and negative_prompt_attention_mask is None
):
raise ValueError(
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
raise ValueError(
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
f" {negative_prompt_attention_mask.shape}."
)
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
def _text_preprocessing(self, text, clean_caption=False):
if clean_caption and not is_bs4_available():
logger.warn(
BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")
)
logger.warn("Setting `clean_caption` to False...")
clean_caption = False
if clean_caption and not is_ftfy_available():
logger.warn(
BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")
)
logger.warn("Setting `clean_caption` to False...")
clean_caption = False
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
if clean_caption:
text = self._clean_caption(text)
text = self._clean_caption(text)
else:
text = text.lower().strip()
return text
return [process(t) for t in text]
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
def _clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# &quot;
caption = re.sub(r"&quot;?", "", caption)
# &amp
caption = re.sub(r"&amp", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(
r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption
)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(
self.bad_punct_regex, r" ", caption
) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = ftfy.fix_text(caption)
caption = html.unescape(html.unescape(caption))
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(
r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption
)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(
r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption
) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_latent_channels,
num_patches,
dtype,
device,
generator,
latents=None,
latents_mask=None,
):
shape = (
batch_size,
num_patches // math.prod(self.patchifier.patch_size),
num_latent_channels,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
elif latents_mask is not None:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = latents * latents_mask[..., None] + noise * (
1 - latents_mask[..., None]
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@staticmethod
def classify_height_width_bin(
height: int, width: int, ratios: dict
) -> Tuple[int, int]:
"""Returns binned height and width."""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@staticmethod
def resize_and_crop_tensor(
samples: torch.Tensor, new_width: int, new_height: int
) -> torch.Tensor:
n_frames, orig_height, orig_width = samples.shape[-3:]
# Check if resizing is needed
if orig_height != new_height or orig_width != new_width:
ratio = max(new_height / orig_height, new_width / orig_width)
resized_width = int(orig_width * ratio)
resized_height = int(orig_height * ratio)
# Resize
samples = rearrange(samples, "b c n h w -> (b n) c h w")
samples = F.interpolate(
samples,
size=(resized_height, resized_width),
mode="bilinear",
align_corners=False,
)
samples = rearrange(samples, "(b n) c h w -> b c n h w", n=n_frames)
# Center Crop
start_x = (resized_width - new_width) // 2
end_x = start_x + new_width
start_y = (resized_height - new_height) // 2
end_y = start_y + new_height
samples = samples[..., start_y:end_y, start_x:end_x]
return samples
@torch.no_grad()
def __call__(
self,
height: int,
width: int,
num_frames: int,
frame_rate: float,
prompt: Union[str, List[str]] = None,
negative_prompt: str = "",
num_inference_steps: int = 20,
timesteps: List[int] = None,
guidance_scale: float = 4.5,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_attention_mask: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
clean_caption: bool = True,
media_items: Optional[torch.FloatTensor] = None,
mixed_precision: bool = False,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 4.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
height (`int`, *optional*, defaults to self.unet.config.sample_size):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size):
The width in pixels of the generated image.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. This negative prompt should be "". If not
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
Pre-generated attention mask for negative text embeddings.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
clean_caption (`bool`, *optional*, defaults to `True`):
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
be installed. If the dependencies are not installed, the embeddings will be created from the raw
prompt.
use_resolution_binning (`bool` defaults to `True`):
If set to `True`, the requested height and width are first mapped to the closest resolutions using
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
the requested resolution. Useful for generating non-square images.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
if "mask_feature" in kwargs:
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
is_video = kwargs.get("is_video", False)
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
)
# 2. Default height and width to transformer
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt,
do_classifier_free_guidance,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
clean_caption=clean_caption,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_attention_mask = torch.cat(
[negative_prompt_attention_mask, prompt_attention_mask], dim=0
)
# 3b. Encode and prepare conditioning data
self.video_scale_factor = self.video_scale_factor if is_video else 1
conditioning_method = kwargs.get("conditioning_method", None)
vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", False)
init_latents, conditioning_mask = self.prepare_conditioning(
media_items,
num_frames,
height,
width,
conditioning_method,
vae_per_channel_normalize,
)
# 4. Prepare latents.
latent_height = height // self.vae_scale_factor
latent_width = width // self.vae_scale_factor
latent_num_frames = num_frames // self.video_scale_factor
if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
latent_num_frames += 1
latent_frame_rate = frame_rate / self.video_scale_factor
num_latent_patches = latent_height * latent_width * latent_num_frames
latents = self.prepare_latents(
batch_size=batch_size * num_images_per_prompt,
num_latent_channels=self.transformer.config.in_channels,
num_patches=num_latent_patches,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
latents=init_latents,
latents_mask=conditioning_mask,
)
if conditioning_mask is not None and is_video:
assert num_images_per_prompt == 1
conditioning_mask = (
torch.cat([conditioning_mask] * 2)
if do_classifier_free_guidance
else conditioning_mask
)
# 5. Prepare timesteps
retrieve_timesteps_kwargs = {}
if isinstance(self.scheduler, TimestepShifter):
retrieve_timesteps_kwargs["samples"] = latents
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
**retrieve_timesteps_kwargs,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0
)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
latent_frame_rates = (
torch.ones(
latent_model_input.shape[0], 1, device=latent_model_input.device
)
* latent_frame_rate
)
current_timestep = t
if not torch.is_tensor(current_timestep):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = latent_model_input.device.type == "mps"
if isinstance(current_timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
current_timestep = torch.tensor(
[current_timestep],
dtype=dtype,
device=latent_model_input.device,
)
elif len(current_timestep.shape) == 0:
current_timestep = current_timestep[None].to(
latent_model_input.device
)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
current_timestep = current_timestep.expand(
latent_model_input.shape[0]
).unsqueeze(-1)
scale_grid = (
(
1 / latent_frame_rates,
self.vae_scale_factor,
self.vae_scale_factor,
)
if self.transformer.use_rope
else None
)
indices_grid = self.patchifier.get_grid(
orig_num_frames=latent_num_frames,
orig_height=latent_height,
orig_width=latent_width,
batch_size=latent_model_input.shape[0],
scale_grid=scale_grid,
device=latents.device,
)
if conditioning_mask is not None:
current_timestep = current_timestep * (1 - conditioning_mask)
# Choose the appropriate context manager based on `mixed_precision`
if mixed_precision:
if "xla" in device.type:
raise NotImplementedError(
"Mixed precision is not supported yet on XLA devices."
)
context_manager = torch.autocast(device.type, dtype=torch.bfloat16)
else:
context_manager = nullcontext() # Dummy context manager
# predict noise model_output
with context_manager:
noise_pred = self.transformer(
latent_model_input.to(self.transformer.dtype),
indices_grid,
encoder_hidden_states=prompt_embeds.to(self.transformer.dtype),
encoder_attention_mask=prompt_attention_mask,
timestep=current_timestep,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
current_timestep, _ = current_timestep.chunk(2)
# learned sigma
if (
self.transformer.config.out_channels // 2
== self.transformer.config.in_channels
):
noise_pred = noise_pred.chunk(2, dim=1)[0]
# compute previous image: x_t -> x_t-1
latents = self.scheduler.step(
noise_pred,
t if current_timestep is None else current_timestep,
latents,
**extra_step_kwargs,
return_dict=False,
)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback_on_step_end is not None:
callback_on_step_end(self, i, t, {})
latents = self.patchifier.unpatchify(
latents=latents,
output_height=latent_height,
output_width=latent_width,
output_num_frames=latent_num_frames,
out_channels=self.transformer.in_channels
// math.prod(self.patchifier.patch_size),
)
if output_type != "latent":
image = vae_decode(
latents,
self.vae,
is_video,
vae_per_channel_normalize=kwargs["vae_per_channel_normalize"],
)
image = self.image_processor.postprocess(image, output_type=output_type)
else:
image = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
def prepare_conditioning(
self,
media_items: torch.Tensor,
num_frames: int,
height: int,
width: int,
method: ConditioningMethod = ConditioningMethod.UNCONDITIONAL,
vae_per_channel_normalize: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Prepare the conditioning data for the video generation. If an input media item is provided, encode it
and set the conditioning_mask to indicate which tokens to condition on. Input media item should have
the same height and width as the generated video.
Args:
media_items (torch.Tensor): media items to condition on (images or videos)
num_frames (int): number of frames to generate
height (int): height of the generated video
width (int): width of the generated video
method (ConditioningMethod, optional): conditioning method to use. Defaults to ConditioningMethod.UNCONDITIONAL.
vae_per_channel_normalize (bool, optional): whether to normalize the input to the VAE per channel. Defaults to False.
Returns:
Tuple[torch.Tensor, torch.Tensor]: the conditioning latents and the conditioning mask
"""
if media_items is None or method == ConditioningMethod.UNCONDITIONAL:
return None, None
assert media_items.ndim == 5
assert height == media_items.shape[-2] and width == media_items.shape[-1]
# Encode the input video and repeat to the required number of frame-tokens
init_latents = vae_encode(
media_items.to(dtype=self.vae.dtype, device=self.vae.device),
self.vae,
vae_per_channel_normalize=vae_per_channel_normalize,
).float()
init_len, target_len = (
init_latents.shape[2],
num_frames // self.video_scale_factor,
)
if isinstance(self.vae, CausalVideoAutoencoder):
target_len += 1
init_latents = init_latents[:, :, :target_len]
if target_len > init_len:
repeat_factor = (target_len + init_len - 1) // init_len # Ceiling division
init_latents = init_latents.repeat(1, 1, repeat_factor, 1, 1)[
:, :, :target_len
]
# Prepare the conditioning mask (1.0 = condition on this token)
b, n, f, h, w = init_latents.shape
conditioning_mask = torch.zeros([b, 1, f, h, w], device=init_latents.device)
if method in [
ConditioningMethod.FIRST_FRAME,
ConditioningMethod.FIRST_AND_LAST_FRAME,
]:
conditioning_mask[:, :, 0] = 1.0
if method in [
ConditioningMethod.LAST_FRAME,
ConditioningMethod.FIRST_AND_LAST_FRAME,
]:
conditioning_mask[:, :, -1] = 1.0
# Patchify the init latents and the mask
conditioning_mask = self.patchifier.patchify(conditioning_mask).squeeze(-1)
init_latents = self.patchifier.patchify(latents=init_latents)
return init_latents, conditioning_mask