VAE: Add timestep conditioning
Browse files
xora/models/autoencoders/causal_video_autoencoder.py
CHANGED
@@ -10,6 +10,8 @@ from einops import rearrange
|
|
10 |
from torch import nn
|
11 |
from diffusers.utils import logging
|
12 |
import torch.nn.functional as F
|
|
|
|
|
13 |
|
14 |
from xora.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd
|
15 |
from xora.models.autoencoders.pixel_norm import PixelNorm
|
@@ -94,6 +96,7 @@ class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
|
94 |
patch_size=config.get("patch_size", 1),
|
95 |
norm_layer=config.get("norm_layer", "group_norm"),
|
96 |
causal=config.get("causal_decoder", False),
|
|
|
97 |
)
|
98 |
|
99 |
dims = config["dims"]
|
@@ -122,6 +125,7 @@ class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
|
122 |
latent_log_var=self.encoder.latent_log_var,
|
123 |
use_quant_conv=self.use_quant_conv,
|
124 |
causal_decoder=self.decoder.causal,
|
|
|
125 |
)
|
126 |
|
127 |
@property
|
@@ -449,6 +453,7 @@ class Decoder(nn.Module):
|
|
449 |
patch_size: int = 1,
|
450 |
norm_layer: str = "group_norm",
|
451 |
causal: bool = True,
|
|
|
452 |
):
|
453 |
super().__init__()
|
454 |
self.patch_size = patch_size
|
@@ -502,6 +507,7 @@ class Decoder(nn.Module):
|
|
502 |
norm_layer=norm_layer,
|
503 |
attention_head_dim=block_params["attention_head_dim"],
|
504 |
inject_noise=block_params.get("inject_noise", False),
|
|
|
505 |
)
|
506 |
elif block_name == "res_x_y":
|
507 |
output_channel = output_channel // block_params.get("multiplier", 2)
|
@@ -513,6 +519,7 @@ class Decoder(nn.Module):
|
|
513 |
groups=norm_num_groups,
|
514 |
norm_layer=norm_layer,
|
515 |
inject_noise=block_params.get("inject_noise", False),
|
|
|
516 |
)
|
517 |
elif block_name == "compress_time":
|
518 |
block = DepthToSpaceUpsample(
|
@@ -552,9 +559,28 @@ class Decoder(nn.Module):
|
|
552 |
|
553 |
self.gradient_checkpointing = False
|
554 |
|
555 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
r"""The forward method of the `Decoder` class."""
|
557 |
assert target_shape is not None, "target_shape must be provided"
|
|
|
558 |
|
559 |
sample = self.conv_in(sample, causal=self.causal)
|
560 |
|
@@ -568,10 +594,46 @@ class Decoder(nn.Module):
|
|
568 |
|
569 |
sample = sample.to(upscale_dtype)
|
570 |
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
for up_block in self.up_blocks:
|
572 |
-
|
|
|
|
|
|
|
|
|
|
|
573 |
|
574 |
sample = self.conv_norm_out(sample)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
sample = self.conv_act(sample)
|
576 |
sample = self.conv_out(sample, causal=self.causal)
|
577 |
|
@@ -731,11 +793,18 @@ class UNetMidBlock3D(nn.Module):
|
|
731 |
resnet_groups: int = 32,
|
732 |
norm_layer: str = "group_norm",
|
733 |
inject_noise: bool = False,
|
|
|
734 |
):
|
735 |
super().__init__()
|
736 |
resnet_groups = (
|
737 |
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
738 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
739 |
|
740 |
self.res_blocks = nn.ModuleList(
|
741 |
[
|
@@ -748,17 +817,38 @@ class UNetMidBlock3D(nn.Module):
|
|
748 |
dropout=dropout,
|
749 |
norm_layer=norm_layer,
|
750 |
inject_noise=inject_noise,
|
|
|
751 |
)
|
752 |
for _ in range(num_layers)
|
753 |
]
|
754 |
)
|
755 |
|
756 |
def forward(
|
757 |
-
self,
|
|
|
|
|
|
|
758 |
) -> torch.FloatTensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
759 |
for resnet in self.res_blocks:
|
760 |
-
hidden_states = resnet(
|
761 |
-
|
|
|
762 |
return hidden_states
|
763 |
|
764 |
|
@@ -846,6 +936,7 @@ class ResnetBlock3D(nn.Module):
|
|
846 |
eps: float = 1e-6,
|
847 |
norm_layer: str = "group_norm",
|
848 |
inject_noise: bool = False,
|
|
|
849 |
):
|
850 |
super().__init__()
|
851 |
self.in_channels = in_channels
|
@@ -915,6 +1006,13 @@ class ResnetBlock3D(nn.Module):
|
|
915 |
else nn.Identity()
|
916 |
)
|
917 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
918 |
def _feed_spatial_noise(
|
919 |
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
|
920 |
) -> torch.FloatTensor:
|
@@ -933,10 +1031,29 @@ class ResnetBlock3D(nn.Module):
|
|
933 |
self,
|
934 |
input_tensor: torch.FloatTensor,
|
935 |
causal: bool = True,
|
|
|
936 |
) -> torch.FloatTensor:
|
937 |
hidden_states = input_tensor
|
|
|
938 |
|
939 |
hidden_states = self.norm1(hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
940 |
|
941 |
hidden_states = self.non_linearity(hidden_states)
|
942 |
|
@@ -949,6 +1066,9 @@ class ResnetBlock3D(nn.Module):
|
|
949 |
|
950 |
hidden_states = self.norm2(hidden_states)
|
951 |
|
|
|
|
|
|
|
952 |
hidden_states = self.non_linearity(hidden_states)
|
953 |
|
954 |
hidden_states = self.dropout(hidden_states)
|
@@ -962,6 +1082,8 @@ class ResnetBlock3D(nn.Module):
|
|
962 |
|
963 |
input_tensor = self.norm3(input_tensor)
|
964 |
|
|
|
|
|
965 |
input_tensor = self.conv_shortcut(input_tensor)
|
966 |
|
967 |
output_tensor = input_tensor + hidden_states
|
@@ -1013,35 +1135,42 @@ def unpatchify(x, patch_size_hw, patch_size_t=1):
|
|
1013 |
def create_video_autoencoder_config(
|
1014 |
latent_channels: int = 64,
|
1015 |
):
|
1016 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1017 |
"_class_name": "CausalVideoAutoencoder",
|
1018 |
-
"dims": 3,
|
1019 |
-
"
|
1020 |
-
"
|
1021 |
-
"latent_channels": latent_channels,
|
1022 |
-
"
|
1023 |
-
("res_x", 4),
|
1024 |
-
("compress_space", 1),
|
1025 |
-
("res_x_y", 1),
|
1026 |
-
("res_x", 2),
|
1027 |
-
("compress_all", 1),
|
1028 |
-
("res_x", 3),
|
1029 |
-
("compress_all", 1),
|
1030 |
-
("res_x_y", 1),
|
1031 |
-
("res_x", 2),
|
1032 |
-
("compress_time", 1),
|
1033 |
-
("res_x", 3),
|
1034 |
-
("res_x", 3),
|
1035 |
-
],
|
1036 |
"patch_size": 4,
|
1037 |
"latent_log_var": "uniform",
|
1038 |
"use_quant_conv": False,
|
1039 |
-
"
|
1040 |
-
"
|
1041 |
}
|
1042 |
|
1043 |
-
return config
|
1044 |
-
|
1045 |
|
1046 |
def test_vae_patchify_unpatchify():
|
1047 |
import torch
|
@@ -1075,8 +1204,9 @@ def demo_video_autoencoder_forward_backward():
|
|
1075 |
print(f"input shape={input_videos.shape}")
|
1076 |
print(f"latent shape={latent.shape}")
|
1077 |
|
|
|
1078 |
reconstructed_videos = video_autoencoder.decode(
|
1079 |
-
latent, target_shape=input_videos.shape
|
1080 |
).sample
|
1081 |
|
1082 |
print(f"reconstructed shape={reconstructed_videos.shape}")
|
@@ -1084,16 +1214,16 @@ def demo_video_autoencoder_forward_backward():
|
|
1084 |
# Validate that single image gets treated the same way as first frame
|
1085 |
input_image = input_videos[:, :, :1, :, :]
|
1086 |
image_latent = video_autoencoder.encode(input_image).latent_dist.mode()
|
1087 |
-
|
1088 |
-
image_latent, target_shape=image_latent.shape
|
1089 |
).sample
|
1090 |
|
1091 |
-
first_frame_latent = latent[:, :, :1, :, :]
|
1092 |
|
1093 |
# assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
|
1094 |
# assert torch.allclose(reconstructed_image, reconstructed_videos[:, :, :1, :, :], atol=1e-6)
|
1095 |
-
assert (image_latent == first_frame_latent).all()
|
1096 |
-
assert (reconstructed_image == reconstructed_videos[:, :, :1, :, :]).all()
|
1097 |
|
1098 |
# Calculate the loss (e.g., mean squared error)
|
1099 |
loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
|
|
|
10 |
from torch import nn
|
11 |
from diffusers.utils import logging
|
12 |
import torch.nn.functional as F
|
13 |
+
from diffusers.models.embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
|
14 |
+
|
15 |
|
16 |
from xora.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd
|
17 |
from xora.models.autoencoders.pixel_norm import PixelNorm
|
|
|
96 |
patch_size=config.get("patch_size", 1),
|
97 |
norm_layer=config.get("norm_layer", "group_norm"),
|
98 |
causal=config.get("causal_decoder", False),
|
99 |
+
timestep_conditioning=config.get("timestep_conditioning", False),
|
100 |
)
|
101 |
|
102 |
dims = config["dims"]
|
|
|
125 |
latent_log_var=self.encoder.latent_log_var,
|
126 |
use_quant_conv=self.use_quant_conv,
|
127 |
causal_decoder=self.decoder.causal,
|
128 |
+
timestep_conditioning=self.decoder.timestep_conditioning,
|
129 |
)
|
130 |
|
131 |
@property
|
|
|
453 |
patch_size: int = 1,
|
454 |
norm_layer: str = "group_norm",
|
455 |
causal: bool = True,
|
456 |
+
timestep_conditioning: bool = False,
|
457 |
):
|
458 |
super().__init__()
|
459 |
self.patch_size = patch_size
|
|
|
507 |
norm_layer=norm_layer,
|
508 |
attention_head_dim=block_params["attention_head_dim"],
|
509 |
inject_noise=block_params.get("inject_noise", False),
|
510 |
+
timestep_conditioning=timestep_conditioning,
|
511 |
)
|
512 |
elif block_name == "res_x_y":
|
513 |
output_channel = output_channel // block_params.get("multiplier", 2)
|
|
|
519 |
groups=norm_num_groups,
|
520 |
norm_layer=norm_layer,
|
521 |
inject_noise=block_params.get("inject_noise", False),
|
522 |
+
timestep_conditioning=False,
|
523 |
)
|
524 |
elif block_name == "compress_time":
|
525 |
block = DepthToSpaceUpsample(
|
|
|
559 |
|
560 |
self.gradient_checkpointing = False
|
561 |
|
562 |
+
self.timestep_conditioning = timestep_conditioning
|
563 |
+
|
564 |
+
if timestep_conditioning:
|
565 |
+
self.timestep_scale_multiplier = nn.Parameter(
|
566 |
+
torch.tensor(1000.0, dtype=torch.float32)
|
567 |
+
)
|
568 |
+
self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
569 |
+
output_channel * 2, 0
|
570 |
+
)
|
571 |
+
self.last_scale_shift_table = nn.Parameter(
|
572 |
+
torch.randn(2, output_channel) / output_channel**0.5
|
573 |
+
)
|
574 |
+
|
575 |
+
def forward(
|
576 |
+
self,
|
577 |
+
sample: torch.FloatTensor,
|
578 |
+
target_shape,
|
579 |
+
timesteps: Optional[torch.Tensor] = None,
|
580 |
+
) -> torch.FloatTensor:
|
581 |
r"""The forward method of the `Decoder` class."""
|
582 |
assert target_shape is not None, "target_shape must be provided"
|
583 |
+
batch_size = sample.shape[0]
|
584 |
|
585 |
sample = self.conv_in(sample, causal=self.causal)
|
586 |
|
|
|
594 |
|
595 |
sample = sample.to(upscale_dtype)
|
596 |
|
597 |
+
if self.timestep_conditioning:
|
598 |
+
assert (
|
599 |
+
timesteps is not None
|
600 |
+
), "should pass timesteps with timestep_conditioning=True"
|
601 |
+
scaled_timesteps = timesteps * self.timestep_scale_multiplier
|
602 |
+
|
603 |
for up_block in self.up_blocks:
|
604 |
+
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
|
605 |
+
sample = checkpoint_fn(up_block)(
|
606 |
+
sample, causal=self.causal, timesteps=scaled_timesteps
|
607 |
+
)
|
608 |
+
else:
|
609 |
+
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
610 |
|
611 |
sample = self.conv_norm_out(sample)
|
612 |
+
|
613 |
+
if self.timestep_conditioning:
|
614 |
+
embedded_timesteps = self.last_time_embedder(
|
615 |
+
timestep=scaled_timesteps.flatten(),
|
616 |
+
resolution=None,
|
617 |
+
aspect_ratio=None,
|
618 |
+
batch_size=sample.shape[0],
|
619 |
+
hidden_dtype=sample.dtype,
|
620 |
+
)
|
621 |
+
embedded_timesteps = embedded_timesteps.view(
|
622 |
+
batch_size, embedded_timesteps.shape[-1], 1, 1, 1
|
623 |
+
)
|
624 |
+
ada_values = self.last_scale_shift_table[
|
625 |
+
None, ..., None, None, None
|
626 |
+
] + embedded_timesteps.reshape(
|
627 |
+
batch_size,
|
628 |
+
2,
|
629 |
+
-1,
|
630 |
+
embedded_timesteps.shape[-3],
|
631 |
+
embedded_timesteps.shape[-2],
|
632 |
+
embedded_timesteps.shape[-1],
|
633 |
+
)
|
634 |
+
shift, scale = ada_values.unbind(dim=1)
|
635 |
+
sample = sample * (1 + scale) + shift
|
636 |
+
|
637 |
sample = self.conv_act(sample)
|
638 |
sample = self.conv_out(sample, causal=self.causal)
|
639 |
|
|
|
793 |
resnet_groups: int = 32,
|
794 |
norm_layer: str = "group_norm",
|
795 |
inject_noise: bool = False,
|
796 |
+
timestep_conditioning: bool = False,
|
797 |
):
|
798 |
super().__init__()
|
799 |
resnet_groups = (
|
800 |
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
801 |
)
|
802 |
+
self.timestep_conditioning = timestep_conditioning
|
803 |
+
|
804 |
+
if timestep_conditioning:
|
805 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
806 |
+
in_channels * 4, 0
|
807 |
+
)
|
808 |
|
809 |
self.res_blocks = nn.ModuleList(
|
810 |
[
|
|
|
817 |
dropout=dropout,
|
818 |
norm_layer=norm_layer,
|
819 |
inject_noise=inject_noise,
|
820 |
+
timestep_conditioning=timestep_conditioning,
|
821 |
)
|
822 |
for _ in range(num_layers)
|
823 |
]
|
824 |
)
|
825 |
|
826 |
def forward(
|
827 |
+
self,
|
828 |
+
hidden_states: torch.FloatTensor,
|
829 |
+
causal: bool = True,
|
830 |
+
timesteps: Optional[torch.Tensor] = None,
|
831 |
) -> torch.FloatTensor:
|
832 |
+
timestep_embed = None
|
833 |
+
if self.timestep_conditioning:
|
834 |
+
assert (
|
835 |
+
timesteps is not None
|
836 |
+
), "should pass timesteps with timestep_conditioning=True"
|
837 |
+
batch_size = hidden_states.shape[0]
|
838 |
+
timestep_embed = self.time_embedder(
|
839 |
+
timestep=timesteps.flatten(),
|
840 |
+
resolution=None,
|
841 |
+
aspect_ratio=None,
|
842 |
+
batch_size=batch_size,
|
843 |
+
hidden_dtype=hidden_states.dtype,
|
844 |
+
)
|
845 |
+
timestep_embed = timestep_embed.view(
|
846 |
+
batch_size, timestep_embed.shape[-1], 1, 1, 1
|
847 |
+
)
|
848 |
for resnet in self.res_blocks:
|
849 |
+
hidden_states = resnet(
|
850 |
+
hidden_states, causal=causal, timesteps=timestep_embed
|
851 |
+
)
|
852 |
return hidden_states
|
853 |
|
854 |
|
|
|
936 |
eps: float = 1e-6,
|
937 |
norm_layer: str = "group_norm",
|
938 |
inject_noise: bool = False,
|
939 |
+
timestep_conditioning: bool = False,
|
940 |
):
|
941 |
super().__init__()
|
942 |
self.in_channels = in_channels
|
|
|
1006 |
else nn.Identity()
|
1007 |
)
|
1008 |
|
1009 |
+
self.timestep_conditioning = timestep_conditioning
|
1010 |
+
|
1011 |
+
if timestep_conditioning:
|
1012 |
+
self.scale_shift_table = nn.Parameter(
|
1013 |
+
torch.randn(4, in_channels) / in_channels**0.5
|
1014 |
+
)
|
1015 |
+
|
1016 |
def _feed_spatial_noise(
|
1017 |
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
|
1018 |
) -> torch.FloatTensor:
|
|
|
1031 |
self,
|
1032 |
input_tensor: torch.FloatTensor,
|
1033 |
causal: bool = True,
|
1034 |
+
timesteps: Optional[torch.Tensor] = None,
|
1035 |
) -> torch.FloatTensor:
|
1036 |
hidden_states = input_tensor
|
1037 |
+
batch_size = hidden_states.shape[0]
|
1038 |
|
1039 |
hidden_states = self.norm1(hidden_states)
|
1040 |
+
if self.timestep_conditioning:
|
1041 |
+
assert (
|
1042 |
+
timesteps is not None
|
1043 |
+
), "should pass timesteps with timestep_conditioning=True"
|
1044 |
+
ada_values = self.scale_shift_table[
|
1045 |
+
None, ..., None, None, None
|
1046 |
+
] + timesteps.reshape(
|
1047 |
+
batch_size,
|
1048 |
+
4,
|
1049 |
+
-1,
|
1050 |
+
timesteps.shape[-3],
|
1051 |
+
timesteps.shape[-2],
|
1052 |
+
timesteps.shape[-1],
|
1053 |
+
)
|
1054 |
+
shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
|
1055 |
+
|
1056 |
+
hidden_states = hidden_states * (1 + scale1) + shift1
|
1057 |
|
1058 |
hidden_states = self.non_linearity(hidden_states)
|
1059 |
|
|
|
1066 |
|
1067 |
hidden_states = self.norm2(hidden_states)
|
1068 |
|
1069 |
+
if self.timestep_conditioning:
|
1070 |
+
hidden_states = hidden_states * (1 + scale2) + shift2
|
1071 |
+
|
1072 |
hidden_states = self.non_linearity(hidden_states)
|
1073 |
|
1074 |
hidden_states = self.dropout(hidden_states)
|
|
|
1082 |
|
1083 |
input_tensor = self.norm3(input_tensor)
|
1084 |
|
1085 |
+
batch_size = input_tensor.shape[0]
|
1086 |
+
|
1087 |
input_tensor = self.conv_shortcut(input_tensor)
|
1088 |
|
1089 |
output_tensor = input_tensor + hidden_states
|
|
|
1135 |
def create_video_autoencoder_config(
|
1136 |
latent_channels: int = 64,
|
1137 |
):
|
1138 |
+
encoder_blocks = [
|
1139 |
+
("res_x", {"num_layers": 4}),
|
1140 |
+
("compress_all_x_y", {"multiplier": 3}),
|
1141 |
+
("res_x", {"num_layers": 4}),
|
1142 |
+
("compress_all_x_y", {"multiplier": 2}),
|
1143 |
+
("res_x", {"num_layers": 4}),
|
1144 |
+
("compress_all", {}),
|
1145 |
+
("res_x", {"num_layers": 3}),
|
1146 |
+
("res_x", {"num_layers": 4}),
|
1147 |
+
]
|
1148 |
+
decoder_blocks = [
|
1149 |
+
("res_x", {"num_layers": 4}),
|
1150 |
+
("compress_all", {"residual": True}),
|
1151 |
+
("res_x_y", {"multiplier": 3}),
|
1152 |
+
("res_x", {"num_layers": 3}),
|
1153 |
+
("compress_all", {"residual": True}),
|
1154 |
+
("res_x_y", {"multiplier": 2}),
|
1155 |
+
("res_x", {"num_layers": 3}),
|
1156 |
+
("compress_all", {"residual": True}),
|
1157 |
+
("res_x", {"num_layers": 3}),
|
1158 |
+
("res_x", {"num_layers": 4}),
|
1159 |
+
]
|
1160 |
+
return {
|
1161 |
"_class_name": "CausalVideoAutoencoder",
|
1162 |
+
"dims": 3,
|
1163 |
+
"encoder_blocks": encoder_blocks,
|
1164 |
+
"decoder_blocks": decoder_blocks,
|
1165 |
+
"latent_channels": latent_channels,
|
1166 |
+
"norm_layer": "pixel_norm",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1167 |
"patch_size": 4,
|
1168 |
"latent_log_var": "uniform",
|
1169 |
"use_quant_conv": False,
|
1170 |
+
"causal_decoder": False,
|
1171 |
+
"timestep_conditioning": True,
|
1172 |
}
|
1173 |
|
|
|
|
|
1174 |
|
1175 |
def test_vae_patchify_unpatchify():
|
1176 |
import torch
|
|
|
1204 |
print(f"input shape={input_videos.shape}")
|
1205 |
print(f"latent shape={latent.shape}")
|
1206 |
|
1207 |
+
timesteps = torch.ones(input_videos.shape[0]) * 0.1
|
1208 |
reconstructed_videos = video_autoencoder.decode(
|
1209 |
+
latent, target_shape=input_videos.shape, timesteps=timesteps
|
1210 |
).sample
|
1211 |
|
1212 |
print(f"reconstructed shape={reconstructed_videos.shape}")
|
|
|
1214 |
# Validate that single image gets treated the same way as first frame
|
1215 |
input_image = input_videos[:, :, :1, :, :]
|
1216 |
image_latent = video_autoencoder.encode(input_image).latent_dist.mode()
|
1217 |
+
_ = video_autoencoder.decode(
|
1218 |
+
image_latent, target_shape=image_latent.shape, timesteps=timesteps
|
1219 |
).sample
|
1220 |
|
1221 |
+
# first_frame_latent = latent[:, :, :1, :, :]
|
1222 |
|
1223 |
# assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
|
1224 |
# assert torch.allclose(reconstructed_image, reconstructed_videos[:, :, :1, :, :], atol=1e-6)
|
1225 |
+
# assert (image_latent == first_frame_latent).all()
|
1226 |
+
# assert (reconstructed_image == reconstructed_videos[:, :, :1, :, :]).all()
|
1227 |
|
1228 |
# Calculate the loss (e.g., mean squared error)
|
1229 |
loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
|
xora/models/autoencoders/vae.py
CHANGED
@@ -251,14 +251,21 @@ class AutoencoderKLWrapper(ModelMixin, ConfigMixin):
|
|
251 |
return moments
|
252 |
|
253 |
def _decode(
|
254 |
-
self,
|
|
|
|
|
|
|
255 |
) -> Union[DecoderOutput, torch.FloatTensor]:
|
256 |
z = self.post_quant_conv(z)
|
257 |
-
dec = self.decoder(z, target_shape=target_shape)
|
258 |
return dec
|
259 |
|
260 |
def decode(
|
261 |
-
self,
|
|
|
|
|
|
|
|
|
262 |
) -> Union[DecoderOutput, torch.FloatTensor]:
|
263 |
assert target_shape is not None, "target_shape must be provided for decoding"
|
264 |
if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1:
|
@@ -291,7 +298,7 @@ class AutoencoderKLWrapper(ModelMixin, ConfigMixin):
|
|
291 |
decoded = (
|
292 |
self._hw_tiled_decode(z, target_shape)
|
293 |
if self.use_hw_tiling
|
294 |
-
else self._decode(z, target_shape=target_shape)
|
295 |
)
|
296 |
|
297 |
if not return_dict:
|
|
|
251 |
return moments
|
252 |
|
253 |
def _decode(
|
254 |
+
self,
|
255 |
+
z: torch.FloatTensor,
|
256 |
+
target_shape=None,
|
257 |
+
timesteps: Optional[torch.Tensor] = None,
|
258 |
) -> Union[DecoderOutput, torch.FloatTensor]:
|
259 |
z = self.post_quant_conv(z)
|
260 |
+
dec = self.decoder(z, target_shape=target_shape, timesteps=timesteps)
|
261 |
return dec
|
262 |
|
263 |
def decode(
|
264 |
+
self,
|
265 |
+
z: torch.FloatTensor,
|
266 |
+
return_dict: bool = True,
|
267 |
+
target_shape=None,
|
268 |
+
timesteps: Optional[torch.Tensor] = None,
|
269 |
) -> Union[DecoderOutput, torch.FloatTensor]:
|
270 |
assert target_shape is not None, "target_shape must be provided for decoding"
|
271 |
if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1:
|
|
|
298 |
decoded = (
|
299 |
self._hw_tiled_decode(z, target_shape)
|
300 |
if self.use_hw_tiling
|
301 |
+
else self._decode(z, target_shape=target_shape, timesteps=timesteps)
|
302 |
)
|
303 |
|
304 |
if not return_dict:
|