import json import os from functools import partial from types import SimpleNamespace from typing import Any, Mapping, Optional, Tuple, Union import torch from einops import rearrange from torch import nn from torch.nn import functional from diffusers.utils import logging from xora.utils.torch_utils import Identity from xora.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd from xora.models.autoencoders.pixel_norm import PixelNorm from xora.models.autoencoders.vae import AutoencoderKLWrapper logger = logging.get_logger(__name__) class VideoAutoencoder(AutoencoderKLWrapper): @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *args, **kwargs, ): config_local_path = pretrained_model_name_or_path / "config.json" config = cls.load_config(config_local_path, **kwargs) video_vae = cls.from_config(config) video_vae.to(kwargs["torch_dtype"]) model_local_path = pretrained_model_name_or_path / "autoencoder.pth" ckpt_state_dict = torch.load(model_local_path) video_vae.load_state_dict(ckpt_state_dict) statistics_local_path = ( pretrained_model_name_or_path / "per_channel_statistics.json" ) if statistics_local_path.exists(): with open(statistics_local_path, "r") as file: data = json.load(file) transposed_data = list(zip(*data["data"])) data_dict = { col: torch.tensor(vals) for col, vals in zip(data["columns"], transposed_data) } video_vae.register_buffer("std_of_means", data_dict["std-of-means"]) video_vae.register_buffer( "mean_of_means", data_dict.get( "mean-of-means", torch.zeros_like(data_dict["std-of-means"]) ), ) return video_vae @staticmethod def from_config(config): assert ( config["_class_name"] == "VideoAutoencoder" ), "config must have _class_name=VideoAutoencoder" if isinstance(config["dims"], list): config["dims"] = tuple(config["dims"]) assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)" double_z = config.get("double_z", True) latent_log_var = config.get( "latent_log_var", "per_channel" if double_z else "none" ) use_quant_conv = config.get("use_quant_conv", True) if use_quant_conv and latent_log_var == "uniform": raise ValueError("uniform latent_log_var requires use_quant_conv=False") encoder = Encoder( dims=config["dims"], in_channels=config.get("in_channels", 3), out_channels=config["latent_channels"], block_out_channels=config["block_out_channels"], patch_size=config.get("patch_size", 1), latent_log_var=latent_log_var, norm_layer=config.get("norm_layer", "group_norm"), patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)), add_channel_padding=config.get("add_channel_padding", False), ) decoder = Decoder( dims=config["dims"], in_channels=config["latent_channels"], out_channels=config.get("out_channels", 3), block_out_channels=config["block_out_channels"], patch_size=config.get("patch_size", 1), norm_layer=config.get("norm_layer", "group_norm"), patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)), add_channel_padding=config.get("add_channel_padding", False), ) dims = config["dims"] return VideoAutoencoder( encoder=encoder, decoder=decoder, latent_channels=config["latent_channels"], dims=dims, use_quant_conv=use_quant_conv, ) @property def config(self): return SimpleNamespace( _class_name="VideoAutoencoder", dims=self.dims, in_channels=self.encoder.conv_in.in_channels // (self.encoder.patch_size_t * self.encoder.patch_size**2), out_channels=self.decoder.conv_out.out_channels // (self.decoder.patch_size_t * self.decoder.patch_size**2), latent_channels=self.decoder.conv_in.in_channels, block_out_channels=[ self.encoder.down_blocks[i].res_blocks[-1].conv1.out_channels for i in range(len(self.encoder.down_blocks)) ], scaling_factor=1.0, norm_layer=self.encoder.norm_layer, patch_size=self.encoder.patch_size, latent_log_var=self.encoder.latent_log_var, use_quant_conv=self.use_quant_conv, patch_size_t=self.encoder.patch_size_t, add_channel_padding=self.encoder.add_channel_padding, ) @property def is_video_supported(self): """ Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images. """ return self.dims != 2 @property def downscale_factor(self): return self.encoder.downsample_factor def to_json_string(self) -> str: import json return json.dumps(self.config.__dict__) def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): model_keys = set(name for name, _ in self.named_parameters()) key_mapping = { ".resnets.": ".res_blocks.", "downsamplers.0": "downsample", "upsamplers.0": "upsample", } converted_state_dict = {} for key, value in state_dict.items(): for k, v in key_mapping.items(): key = key.replace(k, v) if "norm" in key and key not in model_keys: logger.info( f"Removing key {key} from state_dict as it is not present in the model" ) continue converted_state_dict[key] = value super().load_state_dict(converted_state_dict, strict=strict) def last_layer(self): if hasattr(self.decoder, "conv_out"): if isinstance(self.decoder.conv_out, nn.Sequential): last_layer = self.decoder.conv_out[-1] else: last_layer = self.decoder.conv_out else: last_layer = self.decoder.layers[-1] return last_layer class Encoder(nn.Module): r""" The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): The number of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups for normalization. patch_size (`int`, *optional*, defaults to 1): The patch size to use. Should be a power of 2. norm_layer (`str`, *optional*, defaults to `group_norm`): The normalization layer to use. Can be either `group_norm` or `pixel_norm`. latent_log_var (`str`, *optional*, defaults to `per_channel`): The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`. """ def __init__( self, dims: Union[int, Tuple[int, int]] = 3, in_channels: int = 3, out_channels: int = 3, block_out_channels: Tuple[int, ...] = (64,), layers_per_block: int = 2, norm_num_groups: int = 32, patch_size: Union[int, Tuple[int]] = 1, norm_layer: str = "group_norm", # group_norm, pixel_norm latent_log_var: str = "per_channel", patch_size_t: Optional[int] = None, add_channel_padding: Optional[bool] = False, ): super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size self.add_channel_padding = add_channel_padding self.layers_per_block = layers_per_block self.norm_layer = norm_layer self.latent_channels = out_channels self.latent_log_var = latent_log_var if add_channel_padding: in_channels = in_channels * self.patch_size**3 else: in_channels = in_channels * self.patch_size_t * self.patch_size**2 self.in_channels = in_channels output_channel = block_out_channels[0] self.conv_in = make_conv_nd( dims=dims, in_channels=in_channels, out_channels=output_channel, kernel_size=3, stride=1, padding=1, ) self.down_blocks = nn.ModuleList([]) for i in range(len(block_out_channels)): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = DownEncoderBlock3D( dims=dims, in_channels=input_channel, out_channels=output_channel, num_layers=self.layers_per_block, add_downsample=not is_final_block and 2**i >= patch_size, resnet_eps=1e-6, downsample_padding=0, resnet_groups=norm_num_groups, norm_layer=norm_layer, ) self.down_blocks.append(down_block) self.mid_block = UNetMidBlock3D( dims=dims, in_channels=block_out_channels[-1], num_layers=self.layers_per_block, resnet_eps=1e-6, resnet_groups=norm_num_groups, norm_layer=norm_layer, ) # out if norm_layer == "group_norm": self.conv_norm_out = nn.GroupNorm( num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6, ) elif norm_layer == "pixel_norm": self.conv_norm_out = PixelNorm() self.conv_act = nn.SiLU() conv_out_channels = out_channels if latent_log_var == "per_channel": conv_out_channels *= 2 elif latent_log_var == "uniform": conv_out_channels += 1 elif latent_log_var != "none": raise ValueError(f"Invalid latent_log_var: {latent_log_var}") self.conv_out = make_conv_nd( dims, block_out_channels[-1], conv_out_channels, 3, padding=1 ) self.gradient_checkpointing = False @property def downscale_factor(self): return ( 2 ** len( [ block for block in self.down_blocks if isinstance(block.downsample, Downsample3D) ] ) * self.patch_size ) def forward( self, sample: torch.FloatTensor, return_features=False ) -> torch.FloatTensor: r"""The forward method of the `Encoder` class.""" downsample_in_time = sample.shape[2] != 1 # patchify patch_size_t = self.patch_size_t if downsample_in_time else 1 sample = patchify( sample, patch_size_hw=self.patch_size, patch_size_t=patch_size_t, add_channel_padding=self.add_channel_padding, ) sample = self.conv_in(sample) checkpoint_fn = ( partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) if self.gradient_checkpointing and self.training else lambda x: x ) if return_features: features = [] for down_block in self.down_blocks: sample = checkpoint_fn(down_block)( sample, downsample_in_time=downsample_in_time ) if return_features: features.append(sample) sample = checkpoint_fn(self.mid_block)(sample) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if self.latent_log_var == "uniform": last_channel = sample[:, -1:, ...] num_dims = sample.dim() if num_dims == 4: # For shape (B, C, H, W) repeated_last_channel = last_channel.repeat( 1, sample.shape[1] - 2, 1, 1 ) sample = torch.cat([sample, repeated_last_channel], dim=1) elif num_dims == 5: # For shape (B, C, F, H, W) repeated_last_channel = last_channel.repeat( 1, sample.shape[1] - 2, 1, 1, 1 ) sample = torch.cat([sample, repeated_last_channel], dim=1) else: raise ValueError(f"Invalid input shape: {sample.shape}") if return_features: features.append(sample[:, : self.latent_channels, ...]) return sample, features return sample class Decoder(nn.Module): r""" The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): The number of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups for normalization. patch_size (`int`, *optional*, defaults to 1): The patch size to use. Should be a power of 2. norm_layer (`str`, *optional*, defaults to `group_norm`): The normalization layer to use. Can be either `group_norm` or `pixel_norm`. """ def __init__( self, dims, in_channels: int = 3, out_channels: int = 3, block_out_channels: Tuple[int, ...] = (64,), layers_per_block: int = 2, norm_num_groups: int = 32, patch_size: int = 1, norm_layer: str = "group_norm", patch_size_t: Optional[int] = None, add_channel_padding: Optional[bool] = False, ): super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size self.add_channel_padding = add_channel_padding self.layers_per_block = layers_per_block if add_channel_padding: out_channels = out_channels * self.patch_size**3 else: out_channels = out_channels * self.patch_size_t * self.patch_size**2 self.out_channels = out_channels self.conv_in = make_conv_nd( dims, in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1, ) self.mid_block = None self.up_blocks = nn.ModuleList([]) self.mid_block = UNetMidBlock3D( dims=dims, in_channels=block_out_channels[-1], num_layers=self.layers_per_block, resnet_eps=1e-6, resnet_groups=norm_num_groups, norm_layer=norm_layer, ) reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i in range(len(reversed_block_out_channels)): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 up_block = UpDecoderBlock3D( dims=dims, num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, add_upsample=not is_final_block and 2 ** (len(block_out_channels) - i - 1) > patch_size, resnet_eps=1e-6, resnet_groups=norm_num_groups, norm_layer=norm_layer, ) self.up_blocks.append(up_block) if norm_layer == "group_norm": self.conv_norm_out = nn.GroupNorm( num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6 ) elif norm_layer == "pixel_norm": self.conv_norm_out = PixelNorm() self.conv_act = nn.SiLU() self.conv_out = make_conv_nd( dims, block_out_channels[0], out_channels, 3, padding=1 ) self.gradient_checkpointing = False def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor: r"""The forward method of the `Decoder` class.""" assert target_shape is not None, "target_shape must be provided" upsample_in_time = sample.shape[2] < target_shape[2] sample = self.conv_in(sample) upscale_dtype = next(iter(self.up_blocks.parameters())).dtype checkpoint_fn = ( partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) if self.gradient_checkpointing and self.training else lambda x: x ) sample = checkpoint_fn(self.mid_block)(sample) sample = sample.to(upscale_dtype) for up_block in self.up_blocks: sample = checkpoint_fn(up_block)(sample, upsample_in_time=upsample_in_time) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) # un-patchify patch_size_t = self.patch_size_t if upsample_in_time else 1 sample = unpatchify( sample, patch_size_hw=self.patch_size, patch_size_t=patch_size_t, add_channel_padding=self.add_channel_padding, ) return sample class DownEncoderBlock3D(nn.Module): def __init__( self, dims: Union[int, Tuple[int, int]], in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_groups: int = 32, add_downsample: bool = True, downsample_padding: int = 1, norm_layer: str = "group_norm", ): super().__init__() res_blocks = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels res_blocks.append( ResnetBlock3D( dims=dims, in_channels=in_channels, out_channels=out_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, norm_layer=norm_layer, ) ) self.res_blocks = nn.ModuleList(res_blocks) if add_downsample: self.downsample = Downsample3D( dims, out_channels, out_channels=out_channels, padding=downsample_padding, ) else: self.downsample = Identity() def forward( self, hidden_states: torch.FloatTensor, downsample_in_time ) -> torch.FloatTensor: for resnet in self.res_blocks: hidden_states = resnet(hidden_states) hidden_states = self.downsample( hidden_states, downsample_in_time=downsample_in_time ) return hidden_states class UNetMidBlock3D(nn.Module): """ A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks. Args: in_channels (`int`): The number of input channels. dropout (`float`, *optional*, defaults to 0.0): The dropout rate. num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. resnet_groups (`int`, *optional*, defaults to 32): The number of groups to use in the group normalization layers of the resnet blocks. Returns: `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, in_channels, height, width)`. """ def __init__( self, dims: Union[int, Tuple[int, int]], in_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_groups: int = 32, norm_layer: str = "group_norm", ): super().__init__() resnet_groups = ( resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) ) self.res_blocks = nn.ModuleList( [ ResnetBlock3D( dims=dims, in_channels=in_channels, out_channels=in_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, norm_layer=norm_layer, ) for _ in range(num_layers) ] ) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: for resnet in self.res_blocks: hidden_states = resnet(hidden_states) return hidden_states class UpDecoderBlock3D(nn.Module): def __init__( self, dims: Union[int, Tuple[int, int]], in_channels: int, out_channels: int, resolution_idx: Optional[int] = None, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_groups: int = 32, add_upsample: bool = True, norm_layer: str = "group_norm", ): super().__init__() res_blocks = [] for i in range(num_layers): input_channels = in_channels if i == 0 else out_channels res_blocks.append( ResnetBlock3D( dims=dims, in_channels=input_channels, out_channels=out_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, norm_layer=norm_layer, ) ) self.res_blocks = nn.ModuleList(res_blocks) if add_upsample: self.upsample = Upsample3D( dims=dims, channels=out_channels, out_channels=out_channels ) else: self.upsample = Identity() self.resolution_idx = resolution_idx def forward( self, hidden_states: torch.FloatTensor, upsample_in_time=True ) -> torch.FloatTensor: for resnet in self.res_blocks: hidden_states = resnet(hidden_states) hidden_states = self.upsample(hidden_states, upsample_in_time=upsample_in_time) return hidden_states class ResnetBlock3D(nn.Module): r""" A Resnet block. Parameters: in_channels (`int`): The number of channels in the input. out_channels (`int`, *optional*, default to be `None`): The number of output channels for the first conv layer. If None, same as `in_channels`. dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. """ def __init__( self, dims: Union[int, Tuple[int, int]], in_channels: int, out_channels: Optional[int] = None, conv_shortcut: bool = False, dropout: float = 0.0, groups: int = 32, eps: float = 1e-6, norm_layer: str = "group_norm", ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut if norm_layer == "group_norm": self.norm1 = torch.nn.GroupNorm( num_groups=groups, num_channels=in_channels, eps=eps, affine=True ) elif norm_layer == "pixel_norm": self.norm1 = PixelNorm() self.non_linearity = nn.SiLU() self.conv1 = make_conv_nd( dims, in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) if norm_layer == "group_norm": self.norm2 = torch.nn.GroupNorm( num_groups=groups, num_channels=out_channels, eps=eps, affine=True ) elif norm_layer == "pixel_norm": self.norm2 = PixelNorm() self.dropout = torch.nn.Dropout(dropout) self.conv2 = make_conv_nd( dims, out_channels, out_channels, kernel_size=3, stride=1, padding=1 ) self.conv_shortcut = ( make_linear_nd( dims=dims, in_channels=in_channels, out_channels=out_channels ) if in_channels != out_channels else nn.Identity() ) def forward( self, input_tensor: torch.FloatTensor, ) -> torch.FloatTensor: hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.non_linearity(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states = self.non_linearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) input_tensor = self.conv_shortcut(input_tensor) output_tensor = input_tensor + hidden_states return output_tensor class Downsample3D(nn.Module): def __init__( self, dims, in_channels: int, out_channels: int, kernel_size: int = 3, padding: int = 1, ): super().__init__() stride: int = 2 self.padding = padding self.in_channels = in_channels self.dims = dims self.conv = make_conv_nd( dims=dims, in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, ) def forward(self, x, downsample_in_time=True): conv = self.conv if self.padding == 0: if self.dims == 2: padding = (0, 1, 0, 1) else: padding = (0, 1, 0, 1, 0, 1 if downsample_in_time else 0) x = functional.pad(x, padding, mode="constant", value=0) if self.dims == (2, 1) and not downsample_in_time: return conv(x, skip_time_conv=True) return conv(x) class Upsample3D(nn.Module): """ An upsampling layer for 3D tensors of shape (B, C, D, H, W). :param channels: channels in the inputs and outputs. """ def __init__(self, dims, channels, out_channels=None): super().__init__() self.dims = dims self.channels = channels self.out_channels = out_channels or channels self.conv = make_conv_nd( dims, channels, out_channels, kernel_size=3, padding=1, bias=True ) def forward(self, x, upsample_in_time): if self.dims == 2: x = functional.interpolate( x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest" ) else: time_scale_factor = 2 if upsample_in_time else 1 # print("before:", x.shape) b, c, d, h, w = x.shape x = rearrange(x, "b c d h w -> (b d) c h w") # height and width interpolate x = functional.interpolate( x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest" ) _, _, h, w = x.shape if not upsample_in_time and self.dims == (2, 1): x = rearrange(x, "(b d) c h w -> b c d h w ", b=b, h=h, w=w) return self.conv(x, skip_time_conv=True) # Second ** upsampling ** which is essentially treated as a 1D convolution across the 'd' dimension x = rearrange(x, "(b d) c h w -> (b h w) c 1 d", b=b) # (b h w) c 1 d new_d = x.shape[-1] * time_scale_factor x = functional.interpolate(x, (1, new_d), mode="nearest") # (b h w) c 1 new_d x = rearrange( x, "(b h w) c 1 new_d -> b c new_d h w", b=b, h=h, w=w, new_d=new_d ) # b c d h w # x = functional.interpolate( # x, (x.shape[2] * time_scale_factor, x.shape[3] * 2, x.shape[4] * 2), mode="nearest" # ) # print("after:", x.shape) return self.conv(x) def patchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False): if patch_size_hw == 1 and patch_size_t == 1: return x if x.dim() == 4: x = rearrange( x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw ) elif x.dim() == 5: x = rearrange( x, "b c (f p) (h q) (w r) -> b (c p r q) f h w", p=patch_size_t, q=patch_size_hw, r=patch_size_hw, ) else: raise ValueError(f"Invalid input shape: {x.shape}") if ( (x.dim() == 5) and (patch_size_hw > patch_size_t) and (patch_size_t > 1 or add_channel_padding) ): channels_to_pad = x.shape[1] * (patch_size_hw // patch_size_t) - x.shape[1] padding_zeros = torch.zeros( x.shape[0], channels_to_pad, x.shape[2], x.shape[3], x.shape[4], device=x.device, dtype=x.dtype, ) x = torch.cat([padding_zeros, x], dim=1) return x def unpatchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False): if patch_size_hw == 1 and patch_size_t == 1: return x if ( (x.dim() == 5) and (patch_size_hw > patch_size_t) and (patch_size_t > 1 or add_channel_padding) ): channels_to_keep = int(x.shape[1] * (patch_size_t / patch_size_hw)) x = x[:, :channels_to_keep, :, :, :] if x.dim() == 4: x = rearrange( x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw ) elif x.dim() == 5: x = rearrange( x, "b (c p r q) f h w -> b c (f p) (h q) (w r)", p=patch_size_t, q=patch_size_hw, r=patch_size_hw, ) return x def create_video_autoencoder_config( latent_channels: int = 4, ): config = { "_class_name": "VideoAutoencoder", "dims": ( 2, 1, ), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d "in_channels": 3, # Number of input color channels (e.g., RGB) "out_channels": 3, # Number of output color channels "latent_channels": latent_channels, # Number of channels in the latent space representation "block_out_channels": [ 128, 256, 512, 512, ], # Number of output channels of each encoder / decoder inner block "patch_size": 1, } return config def create_video_autoencoder_pathify4x4x4_config( latent_channels: int = 4, ): config = { "_class_name": "VideoAutoencoder", "dims": ( 2, 1, ), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d "in_channels": 3, # Number of input color channels (e.g., RGB) "out_channels": 3, # Number of output color channels "latent_channels": latent_channels, # Number of channels in the latent space representation "block_out_channels": [512] * 4, # Number of output channels of each encoder / decoder inner block "patch_size": 4, "latent_log_var": "uniform", } return config def create_video_autoencoder_pathify4x4_config( latent_channels: int = 4, ): config = { "_class_name": "VideoAutoencoder", "dims": 2, # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d "in_channels": 3, # Number of input color channels (e.g., RGB) "out_channels": 3, # Number of output color channels "latent_channels": latent_channels, # Number of channels in the latent space representation "block_out_channels": [512] * 4, # Number of output channels of each encoder / decoder inner block "patch_size": 4, "norm_layer": "pixel_norm", } return config def test_vae_patchify_unpatchify(): import torch x = torch.randn(2, 3, 8, 64, 64) x_patched = patchify(x, patch_size_hw=4, patch_size_t=4) x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4) assert torch.allclose(x, x_unpatched) def demo_video_autoencoder_forward_backward(): # Configuration for the VideoAutoencoder config = create_video_autoencoder_pathify4x4x4_config() # Instantiate the VideoAutoencoder with the specified configuration video_autoencoder = VideoAutoencoder.from_config(config) print(video_autoencoder) # Print the total number of parameters in the video autoencoder total_params = sum(p.numel() for p in video_autoencoder.parameters()) print(f"Total number of parameters in VideoAutoencoder: {total_params:,}") # Create a mock input tensor simulating a batch of videos # Shape: (batch_size, channels, depth, height, width) # E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame input_videos = torch.randn(2, 3, 8, 64, 64) # Forward pass: encode and decode the input videos latent = video_autoencoder.encode(input_videos).latent_dist.mode() print(f"input shape={input_videos.shape}") print(f"latent shape={latent.shape}") reconstructed_videos = video_autoencoder.decode( latent, target_shape=input_videos.shape ).sample print(f"reconstructed shape={reconstructed_videos.shape}") # Calculate the loss (e.g., mean squared error) loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos) # Perform backward pass loss.backward() print(f"Demo completed with loss: {loss.item()}") # Ensure to call the demo function to execute the forward and backward pass if __name__ == "__main__": demo_video_autoencoder_forward_backward()