ai-tube-model-svd / scripts /util /detection /nsfw_and_watermark_dectection.py
multimodalart's picture
Upload 81 files
7e93a0e
raw
history blame
3.64 kB
import os
import clip
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
RESOURCES_ROOT = "scripts/util/detection/"
def predict_proba(X, weights, biases):
logits = X @ weights.T + biases
proba = np.where(
logits >= 0, 1 / (1 + np.exp(-logits)), np.exp(logits) / (1 + np.exp(logits))
)
return proba.T
def load_model_weights(path: str):
model_weights = np.load(path)
return model_weights["weights"], model_weights["biases"]
def clip_process_images(images: torch.Tensor) -> torch.Tensor:
min_size = min(images.shape[-2:])
return T.Compose(
[
T.CenterCrop(min_size), # TODO: this might affect the watermark, check this
T.Resize(224, interpolation=T.InterpolationMode.BICUBIC, antialias=True),
T.Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)(images)
class DeepFloydDataFiltering(object):
def __init__(
self, verbose: bool = False, device: torch.device = torch.device("cpu")
):
super().__init__()
self.verbose = verbose
self._device = None
self.clip_model, _ = clip.load("ViT-L/14", device=device)
self.clip_model.eval()
self.cpu_w_weights, self.cpu_w_biases = load_model_weights(
os.path.join(RESOURCES_ROOT, "w_head_v1.npz")
)
self.cpu_p_weights, self.cpu_p_biases = load_model_weights(
os.path.join(RESOURCES_ROOT, "p_head_v1.npz")
)
self.w_threshold, self.p_threshold = 0.5, 0.5
@torch.inference_mode()
def __call__(self, images: torch.Tensor) -> torch.Tensor:
imgs = clip_process_images(images)
if self._device is None:
self._device = next(p for p in self.clip_model.parameters()).device
image_features = self.clip_model.encode_image(imgs.to(self._device))
image_features = image_features.detach().cpu().numpy().astype(np.float16)
p_pred = predict_proba(image_features, self.cpu_p_weights, self.cpu_p_biases)
w_pred = predict_proba(image_features, self.cpu_w_weights, self.cpu_w_biases)
print(f"p_pred = {p_pred}, w_pred = {w_pred}") if self.verbose else None
query = p_pred > self.p_threshold
if query.sum() > 0:
print(f"Hit for p_threshold: {p_pred}") if self.verbose else None
images[query] = T.GaussianBlur(99, sigma=(100.0, 100.0))(images[query])
query = w_pred > self.w_threshold
if query.sum() > 0:
print(f"Hit for w_threshold: {w_pred}") if self.verbose else None
images[query] = T.GaussianBlur(99, sigma=(100.0, 100.0))(images[query])
return images
def load_img(path: str) -> torch.Tensor:
image = Image.open(path)
if not image.mode == "RGB":
image = image.convert("RGB")
image_transforms = T.Compose(
[
T.ToTensor(),
]
)
return image_transforms(image)[None, ...]
def test(root):
from einops import rearrange
filter = DeepFloydDataFiltering(verbose=True)
for p in os.listdir((root)):
print(f"running on {p}...")
img = load_img(os.path.join(root, p))
filtered_img = filter(img)
filtered_img = rearrange(
255.0 * (filtered_img.numpy())[0], "c h w -> h w c"
).astype(np.uint8)
Image.fromarray(filtered_img).save(
os.path.join(root, f"{os.path.splitext(p)[0]}-filtered.jpg")
)
if __name__ == "__main__":
import fire
fire.Fire(test)
print("done.")