Spaces:
Runtime error
Runtime error
File size: 15,008 Bytes
dbac20f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition
"""Video models."""
import math
import torch
import torch.nn as nn
from einops import rearrange, repeat
from timm.layers import to_2tuple
from torch import einsum
from torch.nn import functional as F
default_cfgs = {
'vit_1k':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
'vit_1k_large':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
}
def qkv_attn(q, k, v, tok_mask: torch.Tensor = None):
sim = einsum('b i d, b j d -> b i j', q, k)
# apply masking if provided, tok_mask is (B*S*H, N): 1s - keep; sim is (B*S*H, H, N, N)
if tok_mask is not None:
BSH, N = tok_mask.shape
sim = sim.masked_fill(tok_mask.view(BSH, 1, N) == 0,
float('-inf')) # 1 - broadcasts across N
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
return out
class DividedAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
# init to zeros
self.qkv.weight.data.fill_(0)
self.qkv.bias.data.fill_(0)
self.proj.weight.data.fill_(1)
self.proj.bias.data.fill_(0)
self.attn_drop = nn.Dropout(attn_drop)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, einops_from, einops_to, tok_mask: torch.Tensor = None, **einops_dims):
# num of heads variable
h = self.num_heads
# project x to q, k, v vaalues
q, k, v = self.qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
if tok_mask is not None:
# replicate token mask across heads (b, n) -> (b, h, n) -> (b*h, n) -- same as qkv but w/o d
assert len(tok_mask.shape) == 2
tok_mask = tok_mask.unsqueeze(1).expand(-1, h, -1).reshape(-1, tok_mask.shape[1])
# Scale q
q *= self.scale
# Take out cls_q, cls_k, cls_v
(cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:1], t[:, 1:]), (q, k, v))
# the same for masking
if tok_mask is not None:
cls_mask, mask_ = tok_mask[:, 0:1], tok_mask[:, 1:]
else:
cls_mask, mask_ = None, None
# let CLS token attend to key / values of all patches across time and space
cls_out = qkv_attn(cls_q, k, v, tok_mask=tok_mask)
# rearrange across time or space
q_, k_, v_ = map(lambda t: rearrange(t, f'{einops_from} -> {einops_to}', **einops_dims),
(q_, k_, v_))
# expand CLS token keys and values across time or space and concat
r = q_.shape[0] // cls_k.shape[0]
cls_k, cls_v = map(lambda t: repeat(t, 'b () d -> (b r) () d', r=r), (cls_k, cls_v))
k_ = torch.cat((cls_k, k_), dim=1)
v_ = torch.cat((cls_v, v_), dim=1)
# the same for masking (if provided)
if tok_mask is not None:
# since mask does not have the latent dim (d), we need to remove it from einops dims
mask_ = rearrange(mask_, f'{einops_from} -> {einops_to}'.replace(' d', ''),
**einops_dims)
cls_mask = repeat(cls_mask, 'b () -> (b r) ()',
r=r) # expand cls_mask across time or space
mask_ = torch.cat((cls_mask, mask_), dim=1)
# attention
out = qkv_attn(q_, k_, v_, tok_mask=mask_)
# merge back time or space
out = rearrange(out, f'{einops_to} -> {einops_from}', **einops_dims)
# concat back the cls token
out = torch.cat((cls_out, out), dim=1)
# merge back the heads
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
## to out
x = self.proj(out)
x = self.proj_drop(x)
return x
class DividedSpaceTimeBlock(nn.Module):
def __init__(self,
dim=768,
num_heads=12,
attn_type='divided',
mlp_ratio=4.,
qkv_bias=False,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.einops_from_space = 'b (f n) d'
self.einops_to_space = '(b f) n d'
self.einops_from_time = 'b (f n) d'
self.einops_to_time = '(b n) f d'
self.norm1 = norm_layer(dim)
self.attn = DividedAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop)
self.timeattn = DividedAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop)
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.norm3 = norm_layer(dim)
def forward(self,
x,
seq_len=196,
num_frames=8,
approx='none',
num_landmarks=128,
tok_mask: torch.Tensor = None):
time_output = self.timeattn(self.norm3(x),
self.einops_from_time,
self.einops_to_time,
n=seq_len,
tok_mask=tok_mask)
time_residual = x + time_output
space_output = self.attn(self.norm1(time_residual),
self.einops_from_space,
self.einops_to_space,
f=num_frames,
tok_mask=tok_mask)
space_residual = time_residual + self.drop_path(space_output)
x = space_residual
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Mlp(nn.Module):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = img_size if type(img_size) is tuple else to_2tuple(img_size)
patch_size = img_size if type(patch_size) is tuple else to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class PatchEmbed3D(nn.Module):
""" Image to Patch Embedding """
def __init__(self,
img_size=224,
temporal_resolution=4,
in_chans=3,
patch_size=16,
z_block_size=2,
embed_dim=768,
flatten=True):
super().__init__()
self.height = (img_size // patch_size)
self.width = (img_size // patch_size)
### v-iashin: these two are incorrect
# self.frames = (temporal_resolution // z_block_size)
# self.num_patches = self.height * self.width * self.frames
self.z_block_size = z_block_size
###
self.proj = nn.Conv3d(in_chans,
embed_dim,
kernel_size=(z_block_size, patch_size, patch_size),
stride=(z_block_size, patch_size, patch_size))
self.flatten = flatten
def forward(self, x):
B, C, T, H, W = x.shape
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2)
return x
class HeadMLP(nn.Module):
def __init__(self, n_input, n_classes, n_hidden=512, p=0.1):
super(HeadMLP, self).__init__()
self.n_input = n_input
self.n_classes = n_classes
self.n_hidden = n_hidden
if n_hidden is None:
# use linear classifier
self.block_forward = nn.Sequential(nn.Dropout(p=p),
nn.Linear(n_input, n_classes, bias=True))
else:
# use simple MLP classifier
self.block_forward = nn.Sequential(nn.Dropout(p=p),
nn.Linear(n_input, n_hidden, bias=True),
nn.BatchNorm1d(n_hidden), nn.ReLU(inplace=True),
nn.Dropout(p=p),
nn.Linear(n_hidden, n_classes, bias=True))
print(f"Dropout-NLP: {p}")
def forward(self, x):
return self.block_forward(x)
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
def adapt_input_conv(in_chans, conv_weight, agg='sum'):
conv_type = conv_weight.dtype
conv_weight = conv_weight.float()
O, I, J, K = conv_weight.shape
if in_chans == 1:
if I > 3:
assert conv_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv_weight = conv_weight.reshape(O, I // 3, 3, J, K)
conv_weight = conv_weight.sum(dim=2, keepdim=False)
else:
if agg == 'sum':
print("Summing conv1 weights")
conv_weight = conv_weight.sum(dim=1, keepdim=True)
else:
print("Averaging conv1 weights")
conv_weight = conv_weight.mean(dim=1, keepdim=True)
elif in_chans != 3:
if I != 3:
raise NotImplementedError('Weight format not supported by conversion.')
else:
if agg == 'sum':
print("Summing conv1 weights")
repeat = int(math.ceil(in_chans / 3))
conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
conv_weight *= (3 / float(in_chans))
else:
print("Averaging conv1 weights")
conv_weight = conv_weight.mean(dim=1, keepdim=True)
conv_weight = conv_weight.repeat(1, in_chans, 1, 1)
conv_weight = conv_weight.to(conv_type)
return conv_weight
def load_pretrained(model,
cfg=None,
num_classes=1000,
in_chans=3,
filter_fn=None,
strict=True,
progress=False):
# Load state dict
assert (f"{cfg.VIT.PRETRAINED_WEIGHTS} not in [vit_1k, vit_1k_large]")
state_dict = torch.hub.load_state_dict_from_url(url=default_cfgs[cfg.VIT.PRETRAINED_WEIGHTS])
if filter_fn is not None:
state_dict = filter_fn(state_dict)
input_convs = 'patch_embed.proj'
if input_convs is not None and in_chans != 3:
if isinstance(input_convs, str):
input_convs = (input_convs, )
for input_conv_name in input_convs:
weight_name = input_conv_name + '.weight'
try:
state_dict[weight_name] = adapt_input_conv(in_chans,
state_dict[weight_name],
agg='avg')
print(
f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)'
)
except NotImplementedError as e:
del state_dict[weight_name]
strict = False
print(
f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.'
)
classifier_name = 'head'
label_offset = cfg.get('label_offset', 0)
pretrain_classes = 1000
if num_classes != pretrain_classes:
# completely discard fully connected if model num_classes doesn't match pretrained weights
del state_dict[classifier_name + '.weight']
del state_dict[classifier_name + '.bias']
strict = False
elif label_offset > 0:
# special case for pretrained weights with an extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + '.weight']
state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:]
classifier_bias = state_dict[classifier_name + '.bias']
state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:]
loaded_state = state_dict
self_state = model.state_dict()
all_names = set(self_state.keys())
saved_names = set([])
for name, param in loaded_state.items():
param = param
if 'module.' in name:
name = name.replace('module.', '')
if name in self_state.keys() and param.shape == self_state[name].shape:
saved_names.add(name)
self_state[name].copy_(param)
else:
print(f"didnt load: {name} of shape: {param.shape}")
print("Missing Keys:")
print(all_names - saved_names)
|