File size: 4,762 Bytes
65fd06d 7db3ca3 65fd06d 7f11b82 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7f11b82 65fd06d 7db3ca3 108abb9 88cc598 0810225 88cc598 65fd06d 7db3ca3 65fd06d 108abb9 895e905 9aa1c3d 895e905 108abb9 65fd06d 108abb9 65fd06d 108abb9 7d263fb 108abb9 7d263fb 108abb9 65fd06d 8790f79 65fd06d 7db3ca3 7f11b82 65fd06d 8790f79 65fd06d 8790f79 7db3ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
#!/usr/bin/env python
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-ssd-1b",
torch_dtype=torch.float16,
variant="fp16"
)
pipe = DiffusionPipeline.from_pretrained(
"segmind/SSD-1B",
unet=unet,
torch_dtype=torch.float16,
variant="fp16"
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
else:
pipe = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def generate(prompt: str,
negative_prompt: str = '',
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 1.0,
num_inference_steps: int = 6,
secret_token: str = '') -> PIL.Image.Image:
if secret_token != SECRET_TOKEN:
raise gr.Error(
f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
return pipe(prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type='pil').images[0]
with gr.Blocks() as demo:
gr.HTML("""
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
<div style="text-align: center; color: black;">
<p style="color: black;">This space is a REST API to programmatically generate images using LCM-SSD-1B.</p>
<p style="color: black;">It is not meant to be directly used through a user interface, but using code and an access key.</p>
</div>
</div>""")
secret_token = gr.Text(
label='Secret Token',
max_lines=1,
placeholder='Enter your secret token',
)
prompt = gr.Text(
label='Prompt',
show_label=False,
max_lines=1,
placeholder='Enter your prompt',
container=False,
)
run_button = gr.Button('Run', scale=0)
result = gr.Image(label='Result', show_label=False)
use_negative_prompt = gr.Checkbox(label='Use negative prompt', value=False)
negative_prompt = gr.Text(
label='Negative prompt',
max_lines=1,
placeholder='Enter a negative prompt',
visible=False,
)
seed = gr.Slider(label='Seed',
minimum=0,
maximum=MAX_SEED,
step=1,
value=0)
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
width = gr.Slider(
label='Width',
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label='Height',
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
guidance_scale = gr.Slider(
label='Guidance scale',
minimum=1,
maximum=20,
step=0.1,
value=1.0)
num_inference_steps = gr.Slider(
label='Number of inference steps',
minimum=2,
maximum=40,
step=1,
value=6)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
inputs = [
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
secret_token,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name='run',
)
demo.queue(max_size=6).launch() |