#!/usr/bin/env python import os import random import gradio as gr import numpy as np import PIL.Image import torch from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024')) SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') if torch.cuda.is_available(): unet = UNet2DConditionModel.from_pretrained( "latent-consistency/lcm-ssd-1b", torch_dtype=torch.float16, variant="fp16" ) pipe = DiffusionPipeline.from_pretrained( "segmind/SSD-1B", unet=unet, torch_dtype=torch.float16, variant="fp16" ) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.to(device) else: pipe = None def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def generate(prompt: str, negative_prompt: str = '', use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 1.0, num_inference_steps: int = 6, secret_token: str = '') -> PIL.Image.Image: if secret_token != SECRET_TOKEN: raise gr.Error( f'Invalid secret token. Please fork the original space if you want to use it for yourself.') generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = None # type: ignore return pipe(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type='pil').images[0] with gr.Blocks() as demo: gr.HTML("""

This space is a REST API to programmatically generate MP4s using a LoRA.

Please see the README.md for more information.

""") secret_token = gr.Text( label='Secret Token', max_lines=1, placeholder='Enter your secret token', ) prompt = gr.Text( label='Prompt', show_label=False, max_lines=1, placeholder='Enter your prompt', container=False, ) run_button = gr.Button('Run', scale=0) result = gr.Image(label='Result', show_label=False) use_negative_prompt = gr.Checkbox(label='Use negative prompt', value=False) negative_prompt = gr.Text( label='Negative prompt', max_lines=1, placeholder='Enter a negative prompt', visible=False, ) seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label='Randomize seed', value=True) width = gr.Slider( label='Width', minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label='Height', minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) guidance_scale = gr.Slider( label='Guidance scale', minimum=1, maximum=20, step=0.1, value=1.0) num_inference_steps = gr.Slider( label='Number of inference steps', minimum=2, maximum=40, step=1, value=6) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt ) inputs = [ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, secret_token, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed ).then( fn=generate, inputs=inputs, outputs=result, api_name='run', ) negative_prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed ).then( fn=generate, inputs=inputs, outputs=result ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed ).then( fn=generate, inputs=inputs, outputs=result ) demo.queue(max_size=6).launch()