Spaces:
Paused
Paused
Commit
·
7db3ca3
1
Parent(s):
392ea42
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
import os
|
6 |
import random
|
7 |
-
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
import PIL.Image
|
11 |
import torch
|
12 |
-
from diffusers import DiffusionPipeline
|
13 |
|
14 |
DESCRIPTION = 'This space is an API service meant to be used by VideoChain and VideoQuest.\nWant to use this space for yourself? Please use the original code: [https://huggingface.co/spaces/hysts/SD-XL](https://huggingface.co/spaces/hysts/SD-XL)'
|
15 |
if not torch.cuda.is_available():
|
@@ -17,37 +14,27 @@ if not torch.cuda.is_available():
|
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
|
20 |
-
USE_TORCH_COMPILE = os.getenv('USE_TORCH_COMPILE') == '1'
|
21 |
-
ENABLE_CPU_OFFLOAD = os.getenv('ENABLE_CPU_OFFLOAD') == '1'
|
22 |
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
|
23 |
|
24 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
25 |
if torch.cuda.is_available():
|
26 |
-
|
27 |
-
|
28 |
-
torch_dtype=torch.float16,
|
29 |
-
use_safetensors=True,
|
30 |
-
variant='fp16')
|
31 |
-
refiner = DiffusionPipeline.from_pretrained(
|
32 |
-
'stabilityai/stable-diffusion-xl-refiner-1.0',
|
33 |
torch_dtype=torch.float16,
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
mode='reduce-overhead',
|
47 |
-
fullgraph=True)
|
48 |
else:
|
49 |
pipe = None
|
50 |
-
refiner = None
|
51 |
|
52 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
53 |
if randomize_seed:
|
@@ -65,11 +52,8 @@ def generate(prompt: str,
|
|
65 |
seed: int = 0,
|
66 |
width: int = 1024,
|
67 |
height: int = 1024,
|
68 |
-
|
69 |
-
|
70 |
-
num_inference_steps_base: int = 50,
|
71 |
-
num_inference_steps_refiner: int = 50,
|
72 |
-
apply_refiner: bool = False,
|
73 |
secret_token: str = '') -> PIL.Image.Image:
|
74 |
if secret_token != SECRET_TOKEN:
|
75 |
raise gr.Error(
|
@@ -84,37 +68,16 @@ def generate(prompt: str,
|
|
84 |
if not use_negative_prompt_2:
|
85 |
negative_prompt_2 = None # type: ignore
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
output_type='pil').images[0]
|
98 |
-
else:
|
99 |
-
latents = pipe(prompt=prompt,
|
100 |
-
negative_prompt=negative_prompt,
|
101 |
-
prompt_2=prompt_2,
|
102 |
-
negative_prompt_2=negative_prompt_2,
|
103 |
-
width=width,
|
104 |
-
height=height,
|
105 |
-
guidance_scale=guidance_scale_base,
|
106 |
-
num_inference_steps=num_inference_steps_base,
|
107 |
-
generator=generator,
|
108 |
-
output_type='latent').images
|
109 |
-
image = refiner(prompt=prompt,
|
110 |
-
negative_prompt=negative_prompt,
|
111 |
-
prompt_2=prompt_2,
|
112 |
-
negative_prompt_2=negative_prompt_2,
|
113 |
-
guidance_scale=guidance_scale_refiner,
|
114 |
-
num_inference_steps=num_inference_steps_refiner,
|
115 |
-
image=latents,
|
116 |
-
generator=generator).images[0]
|
117 |
-
return image
|
118 |
|
119 |
with gr.Blocks(css='style.css') as demo:
|
120 |
gr.Markdown(DESCRIPTION)
|
@@ -181,61 +144,33 @@ with gr.Blocks(css='style.css') as demo:
|
|
181 |
step=32,
|
182 |
value=1024,
|
183 |
)
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
step=1,
|
197 |
-
value=50)
|
198 |
-
with gr.Row(visible=False) as refiner_params:
|
199 |
-
guidance_scale_refiner = gr.Slider(
|
200 |
-
label='Guidance scale for refiner',
|
201 |
-
minimum=1,
|
202 |
-
maximum=20,
|
203 |
-
step=0.1,
|
204 |
-
value=5.0)
|
205 |
-
num_inference_steps_refiner = gr.Slider(
|
206 |
-
label='Number of inference steps for refiner',
|
207 |
-
minimum=10,
|
208 |
-
maximum=100,
|
209 |
-
step=1,
|
210 |
-
value=50)
|
211 |
|
212 |
use_negative_prompt.change(
|
213 |
fn=lambda x: gr.update(visible=x),
|
214 |
inputs=use_negative_prompt,
|
215 |
-
outputs=negative_prompt
|
216 |
-
queue=False,
|
217 |
-
api_name=False,
|
218 |
)
|
219 |
use_prompt_2.change(
|
220 |
fn=lambda x: gr.update(visible=x),
|
221 |
inputs=use_prompt_2,
|
222 |
-
outputs=prompt_2
|
223 |
-
queue=False,
|
224 |
-
api_name=False,
|
225 |
)
|
226 |
use_negative_prompt_2.change(
|
227 |
fn=lambda x: gr.update(visible=x),
|
228 |
inputs=use_negative_prompt_2,
|
229 |
-
outputs=negative_prompt_2
|
230 |
-
queue=False,
|
231 |
-
api_name=False,
|
232 |
-
)
|
233 |
-
apply_refiner.change(
|
234 |
-
fn=lambda x: gr.update(visible=x),
|
235 |
-
inputs=apply_refiner,
|
236 |
-
outputs=refiner_params,
|
237 |
-
queue=False,
|
238 |
-
api_name=False,
|
239 |
)
|
240 |
|
241 |
inputs = [
|
@@ -249,19 +184,14 @@ with gr.Blocks(css='style.css') as demo:
|
|
249 |
seed,
|
250 |
width,
|
251 |
height,
|
252 |
-
|
253 |
-
|
254 |
-
num_inference_steps_base,
|
255 |
-
num_inference_steps_refiner,
|
256 |
-
apply_refiner,
|
257 |
secret_token,
|
258 |
]
|
259 |
prompt.submit(
|
260 |
fn=randomize_seed_fn,
|
261 |
inputs=[seed, randomize_seed],
|
262 |
-
outputs=seed
|
263 |
-
queue=False,
|
264 |
-
api_name=False,
|
265 |
).then(
|
266 |
fn=generate,
|
267 |
inputs=inputs,
|
@@ -271,25 +201,19 @@ with gr.Blocks(css='style.css') as demo:
|
|
271 |
negative_prompt.submit(
|
272 |
fn=randomize_seed_fn,
|
273 |
inputs=[seed, randomize_seed],
|
274 |
-
outputs=seed
|
275 |
-
queue=False,
|
276 |
-
api_name=False,
|
277 |
).then(
|
278 |
fn=generate,
|
279 |
inputs=inputs,
|
280 |
-
outputs=result
|
281 |
-
api_name=False,
|
282 |
)
|
283 |
run_button.click(
|
284 |
fn=randomize_seed_fn,
|
285 |
inputs=[seed, randomize_seed],
|
286 |
-
outputs=seed
|
287 |
-
queue=False,
|
288 |
-
api_name=False,
|
289 |
).then(
|
290 |
fn=generate,
|
291 |
inputs=inputs,
|
292 |
-
outputs=result
|
293 |
-
api_name=False,
|
294 |
)
|
295 |
-
demo.queue(max_size=6).launch()
|
|
|
1 |
#!/usr/bin/env python
|
2 |
|
|
|
|
|
3 |
import os
|
4 |
import random
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import PIL.Image
|
8 |
import torch
|
9 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
10 |
|
11 |
DESCRIPTION = 'This space is an API service meant to be used by VideoChain and VideoQuest.\nWant to use this space for yourself? Please use the original code: [https://huggingface.co/spaces/hysts/SD-XL](https://huggingface.co/spaces/hysts/SD-XL)'
|
12 |
if not torch.cuda.is_available():
|
|
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
|
|
|
|
|
17 |
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
|
18 |
|
19 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
20 |
if torch.cuda.is_available():
|
21 |
+
unet = UNet2DConditionModel.from_pretrained(
|
22 |
+
"latent-consistency/lcm-ssd-1b",
|
|
|
|
|
|
|
|
|
|
|
23 |
torch_dtype=torch.float16,
|
24 |
+
variant="fp16"
|
25 |
+
)
|
26 |
|
27 |
+
pipe = DiffusionPipeline.from_pretrained(
|
28 |
+
"segmind/SSD-1B",
|
29 |
+
unet=unet,
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
variant="fp16"
|
32 |
+
)
|
33 |
|
34 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
35 |
+
pipe.to(device)
|
|
|
|
|
36 |
else:
|
37 |
pipe = None
|
|
|
38 |
|
39 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
40 |
if randomize_seed:
|
|
|
52 |
seed: int = 0,
|
53 |
width: int = 1024,
|
54 |
height: int = 1024,
|
55 |
+
guidance_scale: float = 1.0,
|
56 |
+
num_inference_steps: int = 4,
|
|
|
|
|
|
|
57 |
secret_token: str = '') -> PIL.Image.Image:
|
58 |
if secret_token != SECRET_TOKEN:
|
59 |
raise gr.Error(
|
|
|
68 |
if not use_negative_prompt_2:
|
69 |
negative_prompt_2 = None # type: ignore
|
70 |
|
71 |
+
return pipe(prompt=prompt,
|
72 |
+
negative_prompt=negative_prompt,
|
73 |
+
prompt_2=prompt_2,
|
74 |
+
negative_prompt_2=negative_prompt_2,
|
75 |
+
width=width,
|
76 |
+
height=height,
|
77 |
+
guidance_scale=guidance_scale,
|
78 |
+
num_inference_steps=num_inference_steps,
|
79 |
+
generator=generator,
|
80 |
+
output_type='pil').images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
with gr.Blocks(css='style.css') as demo:
|
83 |
gr.Markdown(DESCRIPTION)
|
|
|
144 |
step=32,
|
145 |
value=1024,
|
146 |
)
|
147 |
+
guidance_scale = gr.Slider(
|
148 |
+
label='Guidance scale',
|
149 |
+
minimum=1,
|
150 |
+
maximum=20,
|
151 |
+
step=0.1,
|
152 |
+
value=1.0)
|
153 |
+
num_inference_steps = gr.Slider(
|
154 |
+
label='Number of inference steps',
|
155 |
+
minimum=2,
|
156 |
+
maximum=8,
|
157 |
+
step=1,
|
158 |
+
value=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
use_negative_prompt.change(
|
161 |
fn=lambda x: gr.update(visible=x),
|
162 |
inputs=use_negative_prompt,
|
163 |
+
outputs=negative_prompt
|
|
|
|
|
164 |
)
|
165 |
use_prompt_2.change(
|
166 |
fn=lambda x: gr.update(visible=x),
|
167 |
inputs=use_prompt_2,
|
168 |
+
outputs=prompt_2
|
|
|
|
|
169 |
)
|
170 |
use_negative_prompt_2.change(
|
171 |
fn=lambda x: gr.update(visible=x),
|
172 |
inputs=use_negative_prompt_2,
|
173 |
+
outputs=negative_prompt_2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
)
|
175 |
|
176 |
inputs = [
|
|
|
184 |
seed,
|
185 |
width,
|
186 |
height,
|
187 |
+
guidance_scale,
|
188 |
+
num_inference_steps,
|
|
|
|
|
|
|
189 |
secret_token,
|
190 |
]
|
191 |
prompt.submit(
|
192 |
fn=randomize_seed_fn,
|
193 |
inputs=[seed, randomize_seed],
|
194 |
+
outputs=seed
|
|
|
|
|
195 |
).then(
|
196 |
fn=generate,
|
197 |
inputs=inputs,
|
|
|
201 |
negative_prompt.submit(
|
202 |
fn=randomize_seed_fn,
|
203 |
inputs=[seed, randomize_seed],
|
204 |
+
outputs=seed
|
|
|
|
|
205 |
).then(
|
206 |
fn=generate,
|
207 |
inputs=inputs,
|
208 |
+
outputs=result
|
|
|
209 |
)
|
210 |
run_button.click(
|
211 |
fn=randomize_seed_fn,
|
212 |
inputs=[seed, randomize_seed],
|
213 |
+
outputs=seed
|
|
|
|
|
214 |
).then(
|
215 |
fn=generate,
|
216 |
inputs=inputs,
|
217 |
+
outputs=result
|
|
|
218 |
)
|
219 |
+
demo.queue(max_size=6).launch()
|