Spaces:
Sleeping
Sleeping
import asyncio | |
import json | |
import logging | |
import os | |
import traceback | |
from collections import deque | |
from threading import Thread | |
import speech_recognition as sr | |
import uvicorn | |
from fastapi import Depends, FastAPI, Header, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.requests import Request | |
from fastapi.responses import JSONResponse | |
from pydub import AudioSegment | |
from sse_starlette import EventSourceResponse | |
import extensions.openai.completions as OAIcompletions | |
import extensions.openai.embeddings as OAIembeddings | |
import extensions.openai.images as OAIimages | |
import extensions.openai.logits as OAIlogits | |
import extensions.openai.models as OAImodels | |
import extensions.openai.moderations as OAImoderations | |
from extensions.openai.errors import ServiceUnavailableError | |
from extensions.openai.tokens import token_count, token_decode, token_encode | |
from extensions.openai.utils import _start_cloudflared | |
from modules import shared | |
from modules.logging_colors import logger | |
from modules.models import unload_model | |
from modules.text_generation import stop_everything_event | |
from .typing import ( | |
ChatCompletionRequest, | |
ChatCompletionResponse, | |
ChatPromptResponse, | |
CompletionRequest, | |
CompletionResponse, | |
DecodeRequest, | |
DecodeResponse, | |
EmbeddingsRequest, | |
EmbeddingsResponse, | |
EncodeRequest, | |
EncodeResponse, | |
LoadLorasRequest, | |
LoadModelRequest, | |
LogitsRequest, | |
LogitsResponse, | |
LoraListResponse, | |
ModelInfoResponse, | |
ModelListResponse, | |
TokenCountResponse, | |
to_dict | |
) | |
params = { | |
'embedding_device': 'cpu', | |
'embedding_model': 'sentence-transformers/all-mpnet-base-v2', | |
'sd_webui_url': '', | |
'debug': 0 | |
} | |
streaming_semaphore = asyncio.Semaphore(1) | |
def verify_api_key(authorization: str = Header(None)) -> None: | |
expected_api_key = shared.args.api_key | |
if expected_api_key and (authorization is None or authorization != f"Bearer {expected_api_key}"): | |
raise HTTPException(status_code=401, detail="Unauthorized") | |
def verify_admin_key(authorization: str = Header(None)) -> None: | |
expected_api_key = shared.args.admin_key | |
if expected_api_key and (authorization is None or authorization != f"Bearer {expected_api_key}"): | |
raise HTTPException(status_code=401, detail="Unauthorized") | |
app = FastAPI() | |
check_key = [Depends(verify_api_key)] | |
check_admin_key = [Depends(verify_admin_key)] | |
# Configure CORS settings to allow all origins, methods, and headers | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"] | |
) | |
async def options_route(): | |
return JSONResponse(content="OK") | |
async def openai_completions(request: Request, request_data: CompletionRequest): | |
path = request.url.path | |
is_legacy = "/generate" in path | |
if request_data.stream: | |
async def generator(): | |
async with streaming_semaphore: | |
response = OAIcompletions.stream_completions(to_dict(request_data), is_legacy=is_legacy) | |
for resp in response: | |
disconnected = await request.is_disconnected() | |
if disconnected: | |
break | |
yield {"data": json.dumps(resp)} | |
return EventSourceResponse(generator()) # SSE streaming | |
else: | |
response = OAIcompletions.completions(to_dict(request_data), is_legacy=is_legacy) | |
return JSONResponse(response) | |
async def openai_chat_completions(request: Request, request_data: ChatCompletionRequest): | |
path = request.url.path | |
is_legacy = "/generate" in path | |
if request_data.stream: | |
async def generator(): | |
async with streaming_semaphore: | |
response = OAIcompletions.stream_chat_completions(to_dict(request_data), is_legacy=is_legacy) | |
for resp in response: | |
disconnected = await request.is_disconnected() | |
if disconnected: | |
break | |
yield {"data": json.dumps(resp)} | |
return EventSourceResponse(generator()) # SSE streaming | |
else: | |
response = OAIcompletions.chat_completions(to_dict(request_data), is_legacy=is_legacy) | |
return JSONResponse(response) | |
async def handle_models(request: Request): | |
path = request.url.path | |
is_list = request.url.path.split('?')[0].split('#')[0] == '/v1/models' | |
if is_list: | |
response = OAImodels.list_dummy_models() | |
else: | |
model_name = path[len('/v1/models/'):] | |
response = OAImodels.model_info_dict(model_name) | |
return JSONResponse(response) | |
def handle_billing_usage(): | |
''' | |
Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31 | |
''' | |
return JSONResponse(content={"total_usage": 0}) | |
async def handle_audio_transcription(request: Request): | |
r = sr.Recognizer() | |
form = await request.form() | |
audio_file = await form["file"].read() | |
audio_data = AudioSegment.from_file(audio_file) | |
# Convert AudioSegment to raw data | |
raw_data = audio_data.raw_data | |
# Create AudioData object | |
audio_data = sr.AudioData(raw_data, audio_data.frame_rate, audio_data.sample_width) | |
whisper_language = form.getvalue('language', None) | |
whisper_model = form.getvalue('model', 'tiny') # Use the model from the form data if it exists, otherwise default to tiny | |
transcription = {"text": ""} | |
try: | |
transcription["text"] = r.recognize_whisper(audio_data, language=whisper_language, model=whisper_model) | |
except sr.UnknownValueError: | |
print("Whisper could not understand audio") | |
transcription["text"] = "Whisper could not understand audio UnknownValueError" | |
except sr.RequestError as e: | |
print("Could not request results from Whisper", e) | |
transcription["text"] = "Whisper could not understand audio RequestError" | |
return JSONResponse(content=transcription) | |
async def handle_image_generation(request: Request): | |
if not os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', '')): | |
raise ServiceUnavailableError("Stable Diffusion not available. SD_WEBUI_URL not set.") | |
body = await request.json() | |
prompt = body['prompt'] | |
size = body.get('size', '1024x1024') | |
response_format = body.get('response_format', 'url') # or b64_json | |
n = body.get('n', 1) # ignore the batch limits of max 10 | |
response = await OAIimages.generations(prompt=prompt, size=size, response_format=response_format, n=n) | |
return JSONResponse(response) | |
async def handle_embeddings(request: Request, request_data: EmbeddingsRequest): | |
input = request_data.input | |
if not input: | |
raise HTTPException(status_code=400, detail="Missing required argument input") | |
if type(input) is str: | |
input = [input] | |
response = OAIembeddings.embeddings(input, request_data.encoding_format) | |
return JSONResponse(response) | |
async def handle_moderations(request: Request): | |
body = await request.json() | |
input = body["input"] | |
if not input: | |
raise HTTPException(status_code=400, detail="Missing required argument input") | |
response = OAImoderations.moderations(input) | |
return JSONResponse(response) | |
async def handle_token_encode(request_data: EncodeRequest): | |
response = token_encode(request_data.text) | |
return JSONResponse(response) | |
async def handle_token_decode(request_data: DecodeRequest): | |
response = token_decode(request_data.tokens) | |
return JSONResponse(response) | |
async def handle_token_count(request_data: EncodeRequest): | |
response = token_count(request_data.text) | |
return JSONResponse(response) | |
async def handle_logits(request_data: LogitsRequest): | |
''' | |
Given a prompt, returns the top 50 most likely logits as a dict. | |
The keys are the tokens, and the values are the probabilities. | |
''' | |
response = OAIlogits._get_next_logits(to_dict(request_data)) | |
return JSONResponse(response) | |
async def handle_chat_prompt(request: Request, request_data: ChatCompletionRequest): | |
path = request.url.path | |
is_legacy = "/generate" in path | |
generator = OAIcompletions.chat_completions_common(to_dict(request_data), is_legacy=is_legacy, prompt_only=True) | |
response = deque(generator, maxlen=1).pop() | |
return JSONResponse(response) | |
async def handle_stop_generation(request: Request): | |
stop_everything_event() | |
return JSONResponse(content="OK") | |
async def handle_model_info(): | |
payload = OAImodels.get_current_model_info() | |
return JSONResponse(content=payload) | |
async def handle_list_models(): | |
payload = OAImodels.list_models() | |
return JSONResponse(content=payload) | |
async def handle_load_model(request_data: LoadModelRequest): | |
''' | |
This endpoint is experimental and may change in the future. | |
The "args" parameter can be used to modify flags like "--load-in-4bit" | |
or "--n-gpu-layers" before loading a model. Example: | |
``` | |
"args": { | |
"load_in_4bit": true, | |
"n_gpu_layers": 12 | |
} | |
``` | |
Note that those settings will remain after loading the model. So you | |
may need to change them back to load a second model. | |
The "settings" parameter is also a dict but with keys for the | |
shared.settings object. It can be used to modify the default instruction | |
template like this: | |
``` | |
"settings": { | |
"instruction_template": "Alpaca" | |
} | |
``` | |
''' | |
try: | |
OAImodels._load_model(to_dict(request_data)) | |
return JSONResponse(content="OK") | |
except: | |
traceback.print_exc() | |
return HTTPException(status_code=400, detail="Failed to load the model.") | |
async def handle_unload_model(): | |
unload_model() | |
async def handle_list_loras(): | |
response = OAImodels.list_loras() | |
return JSONResponse(content=response) | |
async def handle_load_loras(request_data: LoadLorasRequest): | |
try: | |
OAImodels.load_loras(request_data.lora_names) | |
return JSONResponse(content="OK") | |
except: | |
traceback.print_exc() | |
return HTTPException(status_code=400, detail="Failed to apply the LoRA(s).") | |
async def handle_unload_loras(): | |
OAImodels.unload_all_loras() | |
return JSONResponse(content="OK") | |
def run_server(): | |
server_addr = '0.0.0.0' if shared.args.listen else '127.0.0.1' | |
port = int(os.environ.get('OPENEDAI_PORT', shared.args.api_port)) | |
ssl_certfile = os.environ.get('OPENEDAI_CERT_PATH', shared.args.ssl_certfile) | |
ssl_keyfile = os.environ.get('OPENEDAI_KEY_PATH', shared.args.ssl_keyfile) | |
if shared.args.public_api: | |
def on_start(public_url: str): | |
logger.info(f'OpenAI-compatible API URL:\n\n{public_url}\n') | |
_start_cloudflared(port, shared.args.public_api_id, max_attempts=3, on_start=on_start) | |
else: | |
if ssl_keyfile and ssl_certfile: | |
logger.info(f'OpenAI-compatible API URL:\n\nhttps://{server_addr}:{port}\n') | |
else: | |
logger.info(f'OpenAI-compatible API URL:\n\nhttp://{server_addr}:{port}\n') | |
if shared.args.api_key: | |
if not shared.args.admin_key: | |
shared.args.admin_key = shared.args.api_key | |
logger.info(f'OpenAI API key:\n\n{shared.args.api_key}\n') | |
if shared.args.admin_key and shared.args.admin_key != shared.args.api_key: | |
logger.info(f'OpenAI API admin key (for loading/unloading models):\n\n{shared.args.admin_key}\n') | |
logging.getLogger("uvicorn.error").propagate = False | |
uvicorn.run(app, host=server_addr, port=port, ssl_certfile=ssl_certfile, ssl_keyfile=ssl_keyfile) | |
def setup(): | |
if shared.args.nowebui: | |
run_server() | |
else: | |
Thread(target=run_server, daemon=True).start() | |