Spaces:
Sleeping
Sleeping
import os | |
from pathlib import Path | |
from typing import Any, Dict, Optional, Union | |
import torch | |
from torch.nn import CrossEntropyLoss | |
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from modules import RoPE, llama_cpp_python_hijack, shared | |
from modules.logging_colors import logger | |
try: | |
import llama_cpp | |
except: | |
llama_cpp = None | |
try: | |
import llama_cpp_cuda | |
except: | |
llama_cpp_cuda = None | |
try: | |
import llama_cpp_cuda_tensorcores | |
except: | |
llama_cpp_cuda_tensorcores = None | |
def llama_cpp_lib(): | |
if shared.args.cpu and llama_cpp is not None: | |
return llama_cpp | |
elif shared.args.tensorcores and llama_cpp_cuda_tensorcores is not None: | |
return llama_cpp_cuda_tensorcores | |
elif llama_cpp_cuda is not None: | |
return llama_cpp_cuda | |
else: | |
return llama_cpp | |
class LlamacppHF(PreTrainedModel): | |
def __init__(self, model, path): | |
super().__init__(PretrainedConfig()) | |
self.model = model | |
self.generation_config = GenerationConfig() | |
self.past_seq = None | |
self.llamacpp_cache = { | |
'n_tokens': self.model.n_tokens, | |
'input_ids': self.model.input_ids, | |
'scores': self.model.scores, | |
'ctx': self.model._ctx.ctx | |
} | |
if shared.args.cfg_cache: | |
self.past_seq_negative = None | |
self.llamacpp_cache_negative = { | |
'n_tokens': self.model.n_tokens, | |
'input_ids': self.model.input_ids.copy(), | |
'scores': self.model.scores.copy(), | |
'ctx': llama_cpp_lib().llama_new_context_with_model(model.model, model.context_params) | |
} | |
def _validate_model_class(self): | |
pass | |
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): | |
pass | |
def prepare_inputs_for_generation(self, input_ids, **kwargs): | |
return {'input_ids': input_ids, **kwargs} | |
def save_cache(self): | |
self.llamacpp_cache.update({ | |
'n_tokens': self.model.n_tokens, | |
'input_ids': self.model.input_ids, | |
'scores': self.model.scores, | |
'ctx': self.model._ctx.ctx | |
}) | |
def save_negative_cache(self): | |
self.llamacpp_cache_negative.update({ | |
'n_tokens': self.model.n_tokens, | |
'input_ids': self.model.input_ids, | |
'scores': self.model.scores, | |
'ctx': self.model._ctx.ctx | |
}) | |
def load_cache(self): | |
self.model.n_tokens = self.llamacpp_cache['n_tokens'] | |
self.model.input_ids = self.llamacpp_cache['input_ids'] | |
self.model.scores = self.llamacpp_cache['scores'] | |
self.model._ctx.ctx = self.llamacpp_cache['ctx'] | |
def load_negative_cache(self): | |
self.model.n_tokens = self.llamacpp_cache_negative['n_tokens'] | |
self.model.input_ids = self.llamacpp_cache_negative['input_ids'] | |
self.model.scores = self.llamacpp_cache_negative['scores'] | |
self.model._ctx.ctx = self.llamacpp_cache_negative['ctx'] | |
def device(self) -> torch.device: | |
return torch.device(0) | |
def __call__(self, *args, **kwargs): | |
use_cache = kwargs.get('use_cache', True) | |
labels = kwargs.get('labels', None) | |
past_key_values = kwargs.get('past_key_values', None) | |
if len(args) > 0: | |
if not shared.args.cfg_cache: | |
logger.error("Please enable the cfg-cache option to use CFG with llamacpp_HF.") | |
return | |
input_ids = args[0] | |
is_negative = True | |
past_seq = self.past_seq_negative | |
self.load_negative_cache() | |
else: | |
input_ids = kwargs['input_ids'] | |
is_negative = False | |
past_seq = self.past_seq | |
self.load_cache() | |
seq = input_ids[0].tolist() | |
if is_negative and past_key_values is not None: | |
seq = past_key_values + seq | |
seq_tensor = torch.tensor(seq) | |
reset = True | |
# Make the forward call. The prefix-match code has been adapted from | |
# https://github.com/abetlen/llama-cpp-python/commit/f4090a0bb2a2a25acfe28d31c82cc1aa273bedee | |
if labels is None: | |
if past_seq is not None: | |
min_length = min(past_seq.shape[0], seq_tensor.shape[0]) | |
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length])) | |
if len(indices) > 0: | |
longest_prefix = indices[0].item() | |
else: | |
longest_prefix = min_length | |
if longest_prefix > 0: | |
reset = False | |
self.model.n_tokens = longest_prefix | |
if len(seq_tensor) - longest_prefix > 0: | |
self.model.eval(seq[longest_prefix:]) | |
else: | |
self.model.n_tokens -= 1 | |
self.model.eval([seq[-1]]) | |
if reset: | |
self.model.reset() | |
self.model.eval(seq) | |
logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(input_ids.device) | |
else: | |
self.model.reset() | |
self.model.eval(seq) | |
logits = torch.tensor(self.model.eval_logits) | |
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(input_ids.device) | |
if is_negative: | |
self.save_negative_cache() | |
self.past_seq_negative = seq_tensor | |
else: | |
self.save_cache() | |
self.past_seq = seq_tensor | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, logits.shape[-1]) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss) | |
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): | |
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported" | |
if isinstance(pretrained_model_name_or_path, str): | |
pretrained_model_name_or_path = Path(pretrained_model_name_or_path) | |
path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path) | |
if path.is_file(): | |
model_file = path | |
else: | |
model_file = sorted(path.glob('*.gguf'))[0] | |
logger.info(f"llama.cpp weights detected: {model_file}\n") | |
if shared.args.tensor_split is None or shared.args.tensor_split.strip() == '': | |
tensor_split_list = None | |
else: | |
tensor_split_list = [float(x) for x in shared.args.tensor_split.strip().split(",")] | |
params = { | |
'model_path': str(model_file), | |
'n_ctx': shared.args.n_ctx, | |
'n_threads': shared.args.threads or None, | |
'n_threads_batch': shared.args.threads_batch or None, | |
'n_batch': shared.args.n_batch, | |
'use_mmap': not shared.args.no_mmap, | |
'use_mlock': shared.args.mlock, | |
'mul_mat_q': not shared.args.no_mul_mat_q, | |
'numa': shared.args.numa, | |
'n_gpu_layers': shared.args.n_gpu_layers, | |
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base), | |
'tensor_split': tensor_split_list, | |
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb, | |
'logits_all': shared.args.logits_all, | |
'offload_kqv': not shared.args.no_offload_kqv, | |
'split_mode': 1 if not shared.args.row_split else 2 | |
} | |
Llama = llama_cpp_lib().Llama | |
model = Llama(**params) | |
return LlamacppHF(model, model_file) | |