Spaces:
Sleeping
Sleeping
import ast | |
import copy | |
import html | |
import pprint | |
import random | |
import time | |
import traceback | |
import numpy as np | |
import torch | |
import transformers | |
from transformers import ( | |
LogitsProcessorList, | |
is_torch_npu_available, | |
is_torch_xpu_available | |
) | |
import modules.shared as shared | |
from modules.cache_utils import process_llamacpp_cache | |
from modules.callbacks import ( | |
Iteratorize, | |
Stream, | |
_StopEverythingStoppingCriteria | |
) | |
from modules.extensions import apply_extensions | |
from modules.grammar.grammar_utils import initialize_grammar | |
from modules.grammar.logits_process import GrammarConstrainedLogitsProcessor | |
from modules.html_generator import generate_basic_html | |
from modules.logging_colors import logger | |
from modules.models import clear_torch_cache | |
def generate_reply(*args, **kwargs): | |
shared.generation_lock.acquire() | |
try: | |
for result in _generate_reply(*args, **kwargs): | |
yield result | |
finally: | |
shared.generation_lock.release() | |
def _generate_reply(question, state, stopping_strings=None, is_chat=False, escape_html=False, for_ui=False): | |
# Find the appropriate generation function | |
generate_func = apply_extensions('custom_generate_reply') | |
if generate_func is None: | |
if shared.model_name == 'None' or shared.model is None: | |
logger.error("No model is loaded! Select one in the Model tab.") | |
yield '' | |
return | |
if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model']: | |
generate_func = generate_reply_custom | |
else: | |
generate_func = generate_reply_HF | |
if generate_func != generate_reply_HF and shared.args.verbose: | |
logger.info("PROMPT=") | |
print(question) | |
print() | |
# Prepare the input | |
original_question = question | |
if not is_chat: | |
state = apply_extensions('state', state) | |
question = apply_extensions('input', question, state) | |
# Find the stopping strings | |
all_stop_strings = [] | |
for st in (stopping_strings, state['custom_stopping_strings']): | |
if type(st) is str: | |
st = ast.literal_eval(f"[{st}]") | |
if type(st) is list and len(st) > 0: | |
all_stop_strings += st | |
shared.stop_everything = False | |
clear_torch_cache() | |
seed = set_manual_seed(state['seed']) | |
last_update = -1 | |
reply = '' | |
is_stream = state['stream'] | |
if len(all_stop_strings) > 0 and not state['stream']: | |
state = copy.deepcopy(state) | |
state['stream'] = True | |
min_update_interval = 0 | |
if state.get('max_updates_second', 0) > 0: | |
min_update_interval = 1 / state['max_updates_second'] | |
# Generate | |
for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat): | |
reply, stop_found = apply_stopping_strings(reply, all_stop_strings) | |
if escape_html: | |
reply = html.escape(reply) | |
if is_stream: | |
cur_time = time.time() | |
# Limit number of tokens/second to make text readable in real time | |
if state['max_tokens_second'] > 0: | |
diff = 1 / state['max_tokens_second'] - (cur_time - last_update) | |
if diff > 0: | |
time.sleep(diff) | |
last_update = time.time() | |
yield reply | |
# Limit updates to avoid lag in the Gradio UI | |
# API updates are not limited | |
else: | |
if cur_time - last_update > min_update_interval: | |
last_update = cur_time | |
yield reply | |
yield reply | |
if stop_found or (state['max_tokens_second'] > 0 and shared.stop_everything): | |
break | |
if not is_chat: | |
reply = apply_extensions('output', reply, state) | |
yield reply | |
def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None): | |
if shared.tokenizer is None: | |
raise ValueError('No tokenizer is loaded') | |
if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model']: | |
input_ids = shared.tokenizer.encode(str(prompt)) | |
if shared.model.__class__.__name__ not in ['Exllamav2Model']: | |
input_ids = np.array(input_ids).reshape(1, len(input_ids)) | |
else: | |
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens) | |
if not add_bos_token: | |
while len(input_ids[0]) > 0 and input_ids[0][0] == shared.tokenizer.bos_token_id: | |
input_ids = input_ids[:, 1:] | |
# Handling truncation | |
if truncation_length is not None: | |
input_ids = input_ids[:, -truncation_length:] | |
if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model'] or shared.args.cpu: | |
return input_ids | |
elif shared.args.deepspeed: | |
import deepspeed | |
return input_ids.to(deepspeed.get_accelerator().current_device_name()) | |
elif torch.backends.mps.is_available(): | |
device = torch.device('mps') | |
return input_ids.to(device) | |
elif is_torch_xpu_available(): | |
return input_ids.to("xpu:0") | |
elif is_torch_npu_available(): | |
return input_ids.to("npu:0") | |
else: | |
return input_ids.cuda() | |
def decode(output_ids, skip_special_tokens=True): | |
if shared.tokenizer is None: | |
raise ValueError('No tokenizer is loaded') | |
return shared.tokenizer.decode(output_ids, skip_special_tokens=skip_special_tokens) | |
def get_encoded_length(prompt): | |
length_after_extensions = apply_extensions('tokenized_length', prompt) | |
if length_after_extensions is not None: | |
return length_after_extensions | |
return len(encode(prompt)[0]) | |
def get_token_ids(prompt): | |
tokens = encode(prompt)[0] | |
decoded_tokens = [shared.tokenizer.decode([i]) for i in tokens] | |
output = '' | |
for row in list(zip(tokens, decoded_tokens)): | |
output += f"{str(int(row[0])).ljust(5)} - {repr(row[1])}\n" | |
return output | |
def get_max_prompt_length(state): | |
return state['truncation_length'] - state['max_new_tokens'] | |
def generate_reply_wrapper(question, state, stopping_strings=None): | |
""" | |
Returns formatted outputs for the UI | |
""" | |
reply = question if not shared.is_seq2seq else '' | |
yield formatted_outputs(reply, shared.model_name) | |
for reply in generate_reply(question, state, stopping_strings, is_chat=False, escape_html=True, for_ui=True): | |
if not shared.is_seq2seq: | |
reply = question + reply | |
yield formatted_outputs(reply, shared.model_name) | |
def formatted_outputs(reply, model_name): | |
return html.unescape(reply), generate_basic_html(reply) | |
def set_manual_seed(seed): | |
seed = int(seed) | |
if seed == -1: | |
seed = random.randint(1, 2**31) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed_all(seed) | |
elif is_torch_xpu_available(): | |
torch.xpu.manual_seed_all(seed) | |
elif is_torch_npu_available(): | |
torch.npu.manual_seed_all(seed) | |
return seed | |
def stop_everything_event(): | |
shared.stop_everything = True | |
def apply_stopping_strings(reply, all_stop_strings): | |
stop_found = False | |
for string in all_stop_strings: | |
idx = reply.find(string) | |
if idx != -1: | |
reply = reply[:idx] | |
stop_found = True | |
break | |
if not stop_found: | |
# If something like "\nYo" is generated just before "\nYou:" | |
# is completed, trim it | |
for string in all_stop_strings: | |
for j in range(len(string) - 1, 0, -1): | |
if reply[-j:] == string[:j]: | |
reply = reply[:-j] | |
break | |
else: | |
continue | |
break | |
return reply, stop_found | |
def get_reply_from_output_ids(output_ids, state=None, starting_from=0): | |
reply = decode(output_ids[starting_from:], state['skip_special_tokens'] if state else True) | |
# Handle tokenizers that do not add the leading space for the first token | |
if (hasattr(shared.tokenizer, 'convert_ids_to_tokens') and len(output_ids) > starting_from) and not reply.startswith(' '): | |
first_token = shared.tokenizer.convert_ids_to_tokens(int(output_ids[starting_from])) | |
if isinstance(first_token, (bytes,)): | |
first_token = first_token.decode('utf8') | |
if first_token.startswith('▁'): | |
reply = ' ' + reply | |
return reply | |
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False): | |
generate_params = {} | |
for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynamic_temperature', 'dynatemp_low', 'dynatemp_high', 'dynatemp_exponent', 'smoothing_factor', 'smoothing_curve', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size']: | |
if k in state: | |
generate_params[k] = state[k] | |
if isinstance(state['sampler_priority'], list) and len(state['sampler_priority']) > 0: | |
generate_params['sampler_priority'] = state['sampler_priority'] | |
elif isinstance(state['sampler_priority'], str) and state['sampler_priority'].strip() != '': | |
generate_params['sampler_priority'] = [x.strip() for x in state['sampler_priority'].replace('\n', ',').split(',') if x.strip()] | |
if state['negative_prompt'] != '': | |
generate_params['negative_prompt_ids'] = encode(state['negative_prompt']) | |
if state['prompt_lookup_num_tokens'] > 0: | |
generate_params['prompt_lookup_num_tokens'] = state['prompt_lookup_num_tokens'] | |
for k in ['epsilon_cutoff', 'eta_cutoff']: | |
if state[k] > 0: | |
generate_params[k] = state[k] * 1e-4 | |
if state['ban_eos_token']: | |
generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id] | |
if state['custom_token_bans']: | |
to_ban = [int(x) for x in state['custom_token_bans'].split(',')] | |
if len(to_ban) > 0: | |
if generate_params.get('suppress_tokens', None): | |
generate_params['suppress_tokens'] += to_ban | |
else: | |
generate_params['suppress_tokens'] = to_ban | |
generate_params.update({'use_cache': not shared.args.no_cache}) | |
if shared.args.deepspeed: | |
generate_params.update({'synced_gpus': True}) | |
# Encode the input | |
input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state)) | |
output = input_ids[0] | |
cuda = not any((shared.args.cpu, shared.args.deepspeed)) | |
if state['auto_max_new_tokens']: | |
generate_params['max_new_tokens'] = state['truncation_length'] - input_ids.shape[-1] | |
# Add the encoded tokens to generate_params | |
question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None) | |
original_input_ids = input_ids | |
generate_params.update({'inputs': input_ids}) | |
if inputs_embeds is not None: | |
generate_params.update({'inputs_embeds': inputs_embeds}) | |
# Stopping criteria / eos token | |
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] | |
generate_params['eos_token_id'] = eos_token_ids | |
generate_params['stopping_criteria'] = transformers.StoppingCriteriaList() | |
generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria()) | |
# Logits processor | |
processor = state.get('logits_processor', LogitsProcessorList([])) | |
if not isinstance(processor, LogitsProcessorList): | |
processor = LogitsProcessorList([processor]) | |
# Grammar | |
if state['grammar_string'].strip() != '': | |
grammar = initialize_grammar(state['grammar_string']) | |
grammar_processor = GrammarConstrainedLogitsProcessor(grammar) | |
processor.append(grammar_processor) | |
apply_extensions('logits_processor', processor, input_ids) | |
generate_params['logits_processor'] = processor | |
if shared.args.verbose: | |
logger.info("GENERATE_PARAMS=") | |
filtered_params = {key: value for key, value in generate_params.items() if not isinstance(value, torch.Tensor)} | |
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(filtered_params) | |
print() | |
logger.info("PROMPT=") | |
print(decode(input_ids[0], skip_special_tokens=False)) | |
print() | |
# Handle StreamingLLM for llamacpp_HF | |
if shared.model.__class__.__name__ == 'LlamacppHF' and shared.args.streaming_llm: | |
tmp = process_llamacpp_cache(shared.model.model, input_ids[-1].tolist(), shared.model.model._input_ids.tolist()) | |
shared.model.past_seq = torch.tensor(tmp) | |
shared.model.save_cache() | |
t0 = time.time() | |
try: | |
if not is_chat and not shared.is_seq2seq: | |
yield '' | |
# Generate the entire reply at once. | |
if not state['stream']: | |
with torch.no_grad(): | |
output = shared.model.generate(**generate_params)[0] | |
if cuda: | |
output = output.cuda() | |
starting_from = 0 if shared.is_seq2seq else len(input_ids[0]) | |
yield get_reply_from_output_ids(output, state, starting_from=starting_from) | |
# Stream the reply 1 token at a time. | |
# This is based on the trick of using 'stopping_criteria' to create an iterator. | |
else: | |
def generate_with_callback(callback=None, *args, **kwargs): | |
kwargs['stopping_criteria'].append(Stream(callback_func=callback)) | |
clear_torch_cache() | |
with torch.no_grad(): | |
shared.model.generate(**kwargs) | |
def generate_with_streaming(**kwargs): | |
return Iteratorize(generate_with_callback, [], kwargs, callback=None) | |
with generate_with_streaming(**generate_params) as generator: | |
cumulative_reply = '' | |
starting_from = 0 if shared.is_seq2seq else len(input_ids[0]) | |
for output in generator: | |
if output[-1] in eos_token_ids: | |
break | |
new_content = get_reply_from_output_ids(output, state, starting_from=starting_from) | |
# check the partial unicode character | |
if chr(0xfffd) in new_content: | |
continue | |
cumulative_reply += new_content | |
starting_from = len(output) | |
yield cumulative_reply | |
except Exception: | |
traceback.print_exc() | |
finally: | |
t1 = time.time() | |
original_tokens = len(original_input_ids[0]) | |
new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0) | |
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') | |
return | |
def generate_reply_custom(question, original_question, seed, state, stopping_strings=None, is_chat=False): | |
""" | |
For models that do not use the transformers library for sampling | |
""" | |
seed = set_manual_seed(state['seed']) | |
t0 = time.time() | |
reply = '' | |
try: | |
if not is_chat: | |
yield '' | |
if not state['stream']: | |
reply = shared.model.generate(question, state) | |
yield reply | |
else: | |
for reply in shared.model.generate_with_streaming(question, state): | |
yield reply | |
except Exception: | |
traceback.print_exc() | |
finally: | |
t1 = time.time() | |
original_tokens = len(encode(original_question)[0]) | |
new_tokens = len(encode(original_question + reply)[0]) - original_tokens | |
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') | |
return | |