Spaces:
Runtime error
Runtime error
Jim Dowling
commited on
Commit
ยท
b4865be
1
Parent(s):
a08fda1
first version
Browse files- app.py +131 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import hopsworks
|
| 3 |
+
from mimesis import Generic
|
| 4 |
+
from mimesis.locales import Locale
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import random
|
| 7 |
+
|
| 8 |
+
# Function to print a styled header
|
| 9 |
+
def print_header(text, font_size=22):
|
| 10 |
+
res = f'<span style=" font-size: {font_size}px;">{text}</span>'
|
| 11 |
+
st.markdown(res, unsafe_allow_html=True)
|
| 12 |
+
|
| 13 |
+
# Function to retrieve and start model deployments
|
| 14 |
+
@st.cache_resource()
|
| 15 |
+
def get_deployments():
|
| 16 |
+
# Displaying a message indicating the process has started
|
| 17 |
+
st.write("๐ Retrieving and Starting Deployments...")
|
| 18 |
+
|
| 19 |
+
# Logging into the Hopsworks project
|
| 20 |
+
project = hopsworks.login()
|
| 21 |
+
|
| 22 |
+
fs = project.get_feature_store()
|
| 23 |
+
|
| 24 |
+
interactions_fg = fs.get_feature_group(
|
| 25 |
+
name="interactions",
|
| 26 |
+
version=1,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
videos_fg = fs.get_feature_group(
|
| 30 |
+
name="videos",
|
| 31 |
+
version=1,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Getting the model serving instance from the project
|
| 35 |
+
ms = project.get_model_serving()
|
| 36 |
+
|
| 37 |
+
# Retrieving deployments for the query model and ranking model
|
| 38 |
+
query_model_deployment = ms.get_deployment("querydeployment")
|
| 39 |
+
ranking_deployment = ms.get_deployment("rankingdeployment")
|
| 40 |
+
|
| 41 |
+
# Starting the ranking deployment with a maximum waiting time of 180 seconds
|
| 42 |
+
ranking_deployment.start(await_running=180)
|
| 43 |
+
|
| 44 |
+
# Starting the query model deployment with a maximum waiting time of 180 seconds
|
| 45 |
+
query_model_deployment.start(await_running=180)
|
| 46 |
+
|
| 47 |
+
# Displaying a message indicating that deployments are ready
|
| 48 |
+
st.write('โ
Deployments are ready!')
|
| 49 |
+
|
| 50 |
+
# Returning deployment instances
|
| 51 |
+
return interactions_fg, videos_fg, ranking_deployment, query_model_deployment
|
| 52 |
+
|
| 53 |
+
def insert_interaction(user_id, video_id, interactions_fg):
|
| 54 |
+
generic = Generic(locale=Locale.EN)
|
| 55 |
+
interaction_id = generic.person.identifier(mask='####-##-####')
|
| 56 |
+
interaction_type = random.choices(
|
| 57 |
+
['like', 'dislike', 'view', 'comment', 'share', 'skip'],
|
| 58 |
+
weights=[1.5, 0.2, 3, 0.5, 0.8, 10], k=1
|
| 59 |
+
)[0]
|
| 60 |
+
watch_time = random.randint(1, 50)
|
| 61 |
+
|
| 62 |
+
interaction_df = pd.DataFrame({
|
| 63 |
+
'interaction_id': [interaction_id],
|
| 64 |
+
'interaction_type': [interaction_type],
|
| 65 |
+
'user_id': [user_id],
|
| 66 |
+
'video_id': [video_id],
|
| 67 |
+
'watch_time': [watch_time]
|
| 68 |
+
})
|
| 69 |
+
|
| 70 |
+
interactions_fg.insert(interaction_df, write_options={"start_offline_materialization": False})
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Define function to fetch recommendations
|
| 74 |
+
def fetch_recommendations(user_id, query_model_deployment):
|
| 75 |
+
st.write('๐ฎ Getting recommendations...')
|
| 76 |
+
deployment_input = {"instances": {"user_id": user_id}}
|
| 77 |
+
prediction = query_model_deployment.predict(deployment_input)['predictions']['ranking']
|
| 78 |
+
return prediction
|
| 79 |
+
|
| 80 |
+
# Function to insert interaction and fetch new recommendations
|
| 81 |
+
def handle_interaction(user_id, video_id, interactions_fg, query_model_deployment):
|
| 82 |
+
insert_interaction(user_id, video_id, interactions_fg)
|
| 83 |
+
return fetch_recommendations(user_id, query_model_deployment)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# Main Streamlit application logic
|
| 87 |
+
def main():
|
| 88 |
+
st.title('๐ฌ Tiktok Personalized Video Recommendations')
|
| 89 |
+
# Initialize or re-use existing deployments
|
| 90 |
+
if 'deployments_initialized' not in st.session_state:
|
| 91 |
+
st.session_state.interactions_fg, st.session_state.videos_fg, st.session_state.ranking_deployment, st.session_state.query_model_deployment = get_deployments()
|
| 92 |
+
st.session_state['deployments_initialized'] = True
|
| 93 |
+
|
| 94 |
+
# User selection box
|
| 95 |
+
user_id_option = st.selectbox(
|
| 96 |
+
'For which user?',
|
| 97 |
+
('SW104K', 'RA693D', 'DR282A', 'SN496G',),
|
| 98 |
+
key='user_select'
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Initialize or refresh recommendations
|
| 102 |
+
if 'recommendations' not in st.session_state or 'refresh' in st.session_state:
|
| 103 |
+
recommendations = fetch_recommendations(user_id_option, st.session_state.query_model_deployment)
|
| 104 |
+
random.shuffle(recommendations)
|
| 105 |
+
st.session_state.recommendations = recommendations
|
| 106 |
+
st.session_state.pop('refresh', None)
|
| 107 |
+
|
| 108 |
+
print_header('๐ Top 3 Recommendations:')
|
| 109 |
+
displayed_recommendations = st.session_state.recommendations[:3]
|
| 110 |
+
for recommendation in displayed_recommendations:
|
| 111 |
+
video_id = recommendation[1]
|
| 112 |
+
if st.button(f"๐ Video ID: {video_id}", key=video_id):
|
| 113 |
+
new_recommendations = handle_interaction(
|
| 114 |
+
user_id_option,
|
| 115 |
+
video_id,
|
| 116 |
+
st.session_state.interactions_fg,
|
| 117 |
+
st.session_state.query_model_deployment,
|
| 118 |
+
)
|
| 119 |
+
random.shuffle(new_recommendations)
|
| 120 |
+
st.session_state.recommendations = new_recommendations
|
| 121 |
+
st.experimental_rerun()
|
| 122 |
+
|
| 123 |
+
if st.button("Stop Streamlit"):
|
| 124 |
+
st.write('โ๏ธ Stopping Deployments...')
|
| 125 |
+
st.session_state.ranking_deployment.stop()
|
| 126 |
+
st.session_state.query_model_deployment.stop()
|
| 127 |
+
st.success('โ
App finished successfully!')
|
| 128 |
+
st.stop()
|
| 129 |
+
|
| 130 |
+
if __name__ == '__main__':
|
| 131 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mimesis==15.1.0
|
| 2 |
+
tensorflow==2.13
|
| 3 |
+
tensorflow-recommenders==0.7.2
|
| 4 |
+
catboost==1.2.1
|
| 5 |
+
streamlit==1.33.0
|
| 6 |
+
hopsworks
|