Spaces:
Paused
Paused
File size: 13,812 Bytes
89cbc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
#####################################################
### DOCUMENT PROCESSOR [FULLDOC]
#####################################################
### Jonathan Wang
# ABOUT:
# This creates an app to chat with PDFs.
# This is the FULLDOC
# which is a class that associates documents
# with their critical information
# and their tools. (keywords, summary, queryengine, etc.)
#####################################################
### TODO Board:
# Automatically determine which reader to use for each document based on the file type.
#####################################################
### PROGRAM SETTINGS
#####################################################
### PROGRAM IMPORTS
from __future__ import annotations
import asyncio
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, TypeVar
from uuid import UUID, uuid4
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core.query_engine import SubQuestionQueryEngine
from llama_index.core.schema import BaseNode, TransformComponent
from llama_index.core.settings import Settings
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from streamlit import session_state as ss
if TYPE_CHECKING:
from llama_index.core.base.base_query_engine import BaseQueryEngine
from llama_index.core.callbacks import CallbackManager
from llama_index.core.node_parser import NodeParser
from llama_index.core.readers.base import BaseReader
from llama_index.core.response_synthesizers import BaseSynthesizer
from llama_index.core.retrievers import BaseRetriever
# Own Modules
from engine import get_engine
from keywords import KeywordMetadataAdder
from retriever import get_retriever
from storage import get_docstore, get_vector_store
from summary import DEFAULT_ONELINE_SUMMARY_TEMPLATE, DEFAULT_TREE_SUMMARY_TEMPLATE
#####################################################
### SCRIPT
GenericNode = TypeVar("GenericNode", bound=BaseNode)
class FullDocument:
"""Bundles all the information about a document together.
Args:
name (str): The name of the document.
file_path (Path): The path to the document.
summary (str): The summary of the document.
keywords (List[str]): The keywords of the document.
entities (List[str]): The entities of the document.
vector_store (BaseDocumentStore): The vector store of the document.
"""
# Identifiers
id: UUID
name: str
file_path: Path
file_name: str
# Basic Contents
summary: str
summary_oneline: str # A one line summary of the document.
keywords: set[str] # List of keywords in document.
# entities: Set[str] # list of entities in document ## TODO: Add entities
metadata: dict[str, Any] | None
# NOTE: other metdata that might be useful:
# Document Creation / Last Date (e.g., recency important for legal/medical questions)
# Document Source and Trustworthiness
# Document Access Level (though this isn't important for us here.)
# Document Citations?
# Document Format? (text/spreadsheet/presentation/image/etc.)
# RAG Components
nodes: list[BaseNode]
storage_context: StorageContext # NOTE: current setup has single storage context per document.
vector_store_index: VectorStoreIndex
retriever: BaseRetriever # TODO(Jonathan Wang): Consider multiple retrievers for keywords vs semantic.
engine: BaseQueryEngine # TODO(Jonathan Wang): Consider mulitple engines.
subquestion_engine: SubQuestionQueryEngine
def __init__(
self,
name: str,
file_path: Path | str,
metadata: dict[str, Any] | None = None
) -> None:
self.id = uuid4()
self.name = name
if (isinstance(file_path, str)):
file_path = Path(file_path)
self.file_path = file_path
self.file_name = file_path.name
self.metadata = metadata
@classmethod
def class_name(cls) -> str:
return "FullDocument"
def add_name_to_nodes(self, nodes: list[GenericNode]) -> list[GenericNode]:
"""Add the name of the document to the nodes.
Args:
nodes (List[GenericNode]): The nodes to add the name to.
Returns:
List[GenericNode]: The nodes with the name added.
"""
for node in nodes:
node.metadata["name"] = self.name
return nodes
def file_to_nodes(
self,
reader: BaseReader,
postreaders: list[Callable[[list[GenericNode]], list[GenericNode]] | TransformComponent] | None=None, # NOTE: these should be used in order. and probably all TransformComponent instead.
node_parser: NodeParser | None=None,
postparsers: list[Callable[[list[GenericNode]], list[GenericNode]] | TransformComponent] | None=None, # Stuff like chunking, adding Embeddings, etc.
) -> None:
"""Read in the file path and get the nodes.
Args:
file_path (Optional[Path], optional): The path to the file. Defaults to file_path from init.
reader (Optional[BaseReader], optional): The reader to use. Defaults to reader from init.
"""
# Use the provided reader to read in the file.
print("NEWPDF: Reading input file...")
nodes = reader.load_data(file_path=self.file_path)
# Use node postreaders to post process the nodes.
if (postreaders is not None):
for node_postreader in postreaders:
nodes = node_postreader(nodes) # type: ignore (TransformComponent allows a list of nodes)
# Use node parser to parse the nodes.
if (node_parser is None):
node_parser = Settings.node_parser
nodes = node_parser(nodes) # type: ignore (Document is a child of BaseNode)
# Use node postreaders to post process the nodes. (also add the common name to the nodes)
if (postparsers is None):
postparsers = [self.add_name_to_nodes]
else:
postparsers.append(self.add_name_to_nodes)
for node_postparser in postparsers:
nodes = node_postparser(nodes) # type: ignore (TransformComponent allows a list of nodes)
# Save nodes
self.nodes = nodes # type: ignore
def nodes_to_summary(
self,
summarizer: BaseSynthesizer, # NOTE: this is typically going to be a TreeSummarizer / SimpleSummarize for our use case
query_str: str = DEFAULT_TREE_SUMMARY_TEMPLATE,
) -> None:
"""Summarize the nodes.
Args:
summarizer (BaseSynthesizer): The summarizer to use. Takes in nodes and returns summary.
"""
if (not hasattr(self, "nodes")):
msg = "Nodes must be extracted from document using `file_to_nodes` before calling `nodes_to_summary`."
raise ValueError(msg)
text_chunks = [getattr(node, "text", "") for node in self.nodes if hasattr(node, "text")]
summary_responses = summarizer.aget_response(query_str=query_str, text_chunks=text_chunks)
loop = asyncio.get_event_loop()
summary = loop.run_until_complete(summary_responses)
if (not isinstance(summary, str)):
# TODO(Jonathan Wang): ... this should always give us a string, right? we're not doing anything fancy with TokenGen/TokenAsyncGen/Pydantic BaseModel...
msg = f"Summarizer must return a string summary. Actual type: {type(summary)}, with value {summary}."
raise TypeError(msg)
self.summary = summary
def summary_to_oneline(
self,
summarizer: BaseSynthesizer, # NOTE: this is typically going to be a SimpleSummarize / TreeSummarizer for our use case
query_str: str = DEFAULT_ONELINE_SUMMARY_TEMPLATE,
) -> None:
if (not hasattr(self, "summary")):
msg = "Summary must be extracted from document using `nodes_to_summary` before calling `summary_to_oneline`."
raise ValueError(msg)
oneline = summarizer.get_response(query_str=query_str, text_chunks=[self.summary]) # There's only one chunk.
self.summary_oneline = oneline # type: ignore | shouldn't have fancy TokenGenerators / TokenAsyncGenerators / Pydantic BaseModels
def nodes_to_document_keywords(self, keyword_extractor: Optional[KeywordMetadataAdder] = None) -> None:
"""Save the keywords from the nodes into the document.
Args:
keyword_extractor (Optional[BaseKeywordExtractor], optional): The keyword extractor to use. Defaults to None.
"""
if (not hasattr(self, "nodes")):
msg = "Nodes must be extracted from document using `file_to_nodes` before calling `nodes_to_keywords`."
raise ValueError(msg)
if (keyword_extractor is None):
keyword_extractor = KeywordMetadataAdder()
# Add keywords to nodes using KeywordMetadataAdder
keyword_extractor.process_nodes(self.nodes)
# Save keywords
keywords: list[str] = []
for node in self.nodes:
node_keywords = node.metadata.get("keyword_metadata", "").split(", ") # NOTE: KeywordMetadataAdder concatinates b/c required string output
keywords = keywords + node_keywords
# TODO(Jonathan Wang): handle dedupling keywords which are similar to each other (fuzzy?)
self.keywords = set(keywords)
def nodes_to_storage(self, create_new_storage: bool = True) -> None:
"""Save the nodes to storage."""
if (not hasattr(self, "nodes")):
msg = "Nodes must be extracted from document using `file_to_nodes` before calling `nodes_to_storage`."
raise ValueError(msg)
if (create_new_storage):
docstore = get_docstore(documents=self.nodes)
self.docstore = docstore
vector_store = get_vector_store()
storage_context = StorageContext.from_defaults(
docstore=docstore,
vector_store=vector_store
)
self.storage_context = storage_context
vector_store_index = VectorStoreIndex(
self.nodes, storage_context=storage_context
)
self.vector_store_index = vector_store_index
else:
### TODO(Jonathan Wang): use an existing storage instead of creating a new one.
msg = "Currently creates new storage for every document."
raise NotImplementedError(msg)
# TODO(Jonathan Wang): Create multiple different retrievers based on the question type(?)
# E.g., if the question is focused on specific keywords or phrases, use a retriever oriented towards sparse scores.
def storage_to_retriever(
self,
semantic_nodes: int = 6,
sparse_nodes: int = 3,
fusion_nodes: int = 3,
semantic_weight: float = 0.6,
merge_up_thresh: float = 0.5,
callback_manager: CallbackManager | None=None
) -> None:
"""Create retriever from storage."""
if (not hasattr(self, "vector_store_index")):
msg = "Vector store must be extracted from document using `nodes_to_storage` before calling `storage_to_retriever`."
raise ValueError(msg)
retriever = get_retriever(
_vector_store_index=self.vector_store_index,
semantic_top_k=semantic_nodes,
sparse_top_k=sparse_nodes,
fusion_similarity_top_k=fusion_nodes,
semantic_weight_fraction=semantic_weight,
merge_up_thresh=merge_up_thresh,
verbose=True,
_callback_manager=callback_manager or ss.callback_manager
)
self.retriever = retriever
def retriever_to_engine(
self,
response_synthesizer: BaseSynthesizer,
callback_manager: CallbackManager | None=None
) -> None:
"""Create query engine from retriever."""
if (not hasattr(self, "retriever")):
msg = "Retriever must be extracted from document using `storage_to_retriever` before calling `retriver_to_engine`."
raise ValueError(msg)
engine = get_engine(
retriever=self.retriever,
response_synthesizer=response_synthesizer,
callback_manager=callback_manager or ss.callback_manager
)
self.engine = engine
# TODO(Jonathan Wang): Create Summarization Index and Engine.
def engine_to_sub_question_engine(self) -> None:
"""Convert a basic query engine into a sub-question query engine for handling complex, multi-step questions.
Args:
query_engine (BaseQueryEngine): The Base Query Engine to convert.
"""
if (not hasattr(self, "summary_oneline")):
msg = "One Line Summary must be created for the document before calling `engine_to_sub_query_engine`"
raise ValueError(msg)
elif (not hasattr(self, "engine")):
msg = "Basic Query Engine must be created before calling `engine_to_sub_query_engine`"
raise ValueError(msg)
sqe_tools = [
QueryEngineTool(
query_engine=self.engine, # TODO(Jonathan Wang): handle mulitple engines?
metadata=ToolMetadata(
name=(self.name + "simple query answerer"),
description=f"""A tool that answers simple questions about the following document: {self.summary_oneline}"""
)
)
# TODO(Jonathan Wang): add more tools
]
subquestion_engine = SubQuestionQueryEngine.from_defaults(
query_engine_tools=sqe_tools,
verbose=True,
use_async=True
)
self.subquestion_engine = subquestion_engine
|