Spaces:
Paused
Paused
File size: 13,188 Bytes
89cbc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
#####################################################
### DOCUMENT PROCESSOR [OBSERVATION/LOGGING]
#####################################################
# Jonathan Wang
# ABOUT:
# This project creates an app to chat with PDFs.
# This is the Observation and Logging
# to see the actions undertaken in the RAG pipeline.
#####################################################
## TODOS:
# Why does FullRAGEventHandler keep producing duplicate output?
#####################################################
## IMPORTS:
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, ClassVar, Sequence
import streamlit as st
# Callbacks
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
# Pretty Printing
# from llama_index.core.response.notebook_utils import display_source_node
# End user handler
from llama_index.core.instrumentation import get_dispatcher
from llama_index.core.instrumentation.event_handlers import BaseEventHandler
from llama_index.core.instrumentation.events.agent import (
AgentChatWithStepEndEvent,
AgentChatWithStepStartEvent,
AgentRunStepEndEvent,
AgentRunStepStartEvent,
AgentToolCallEvent,
)
from llama_index.core.instrumentation.events.chat_engine import (
StreamChatDeltaReceivedEvent,
StreamChatErrorEvent,
)
from llama_index.core.instrumentation.events.embedding import (
EmbeddingEndEvent,
EmbeddingStartEvent,
)
from llama_index.core.instrumentation.events.llm import (
LLMChatEndEvent,
LLMChatInProgressEvent,
LLMChatStartEvent,
LLMCompletionEndEvent,
LLMCompletionStartEvent,
LLMPredictEndEvent,
LLMPredictStartEvent,
LLMStructuredPredictEndEvent,
LLMStructuredPredictStartEvent,
)
from llama_index.core.instrumentation.events.query import (
QueryEndEvent,
QueryStartEvent,
)
from llama_index.core.instrumentation.events.rerank import (
ReRankEndEvent,
ReRankStartEvent,
)
from llama_index.core.instrumentation.events.retrieval import (
RetrievalEndEvent,
RetrievalStartEvent,
)
from llama_index.core.instrumentation.events.span import (
SpanDropEvent,
)
from llama_index.core.instrumentation.events.synthesis import (
# GetResponseEndEvent,
GetResponseStartEvent,
SynthesizeEndEvent,
SynthesizeStartEvent,
)
from llama_index.core.instrumentation.span import SimpleSpan
from llama_index.core.instrumentation.span_handlers.base import BaseSpanHandler
from treelib import Tree
if TYPE_CHECKING:
from llama_index.core.instrumentation.dispatcher import Dispatcher
from llama_index.core.instrumentation.events import BaseEvent
from llama_index.core.schema import BaseNode, NodeWithScore
#####################################################
## Code
logger = logging.getLogger(__name__)
@st.cache_resource
def get_callback_manager() -> CallbackManager:
"""Create the callback manager for the code."""
return CallbackManager([LlamaDebugHandler()])
def display_source_node(source_node: NodeWithScore, max_length: int = 100) -> str:
source_text = source_node.node.get_content().strip()
source_text = source_text[:max_length] + "..." if len(source_text) > max_length else source_text
return (
f"**Node ID:** {source_node.node.node_id}<br>"
f"**Similarity:** {source_node.score}<br>"
f"**Text:** {source_text}<br>"
)
class RAGEventHandler(BaseEventHandler):
"""Pruned RAG Event Handler."""
# events: List[BaseEvent] = [] # TODO: handle removing historical events if they're too old.
@classmethod
def class_name(cls) -> str:
"""Class name."""
return "RAGEventHandler"
def handle(self, event: BaseEvent, **kwargs: Any) -> None:
"""Logic for handling event."""
print("-----------------------")
# all events have these attributes
print(event.id_)
print(event.timestamp)
print(event.span_id)
# event specific attributes
if isinstance(event, LLMChatStartEvent):
# initial
print(event.messages)
print(event.additional_kwargs)
print(event.model_dict)
elif isinstance(event, LLMChatInProgressEvent):
# streaming
print(event.response.delta)
elif isinstance(event, LLMChatEndEvent):
# final response
print(event.response)
# self.events.append(event)
print("-----------------------")
class FullRAGEventHandler(BaseEventHandler):
"""RAG event handler. Built off the example custom event handler.
In general, logged events are treated as single events in a point in time,
that link to a span. The span is a collection of events that are related to
a single task. The span is identified by a unique span_id.
While events are independent, there is some hierarchy.
For example, in query_engine.query() call with a reranker attached:
- QueryStartEvent
- RetrievalStartEvent
- EmbeddingStartEvent
- EmbeddingEndEvent
- RetrievalEndEvent
- RerankStartEvent
- RerankEndEvent
- SynthesizeStartEvent
- GetResponseStartEvent
- LLMPredictStartEvent
- LLMChatStartEvent
- LLMChatEndEvent
- LLMPredictEndEvent
- GetResponseEndEvent
- SynthesizeEndEvent
- QueryEndEvent
"""
events: ClassVar[list[BaseEvent]] = []
@classmethod
def class_name(cls) -> str:
"""Class name."""
return "RAGEventHandler"
def _print_event_nodes(self, event_nodes: Sequence[NodeWithScore | BaseNode]) -> str:
"""Print a list of nodes nicely."""
output_str = "["
for node in event_nodes:
output_str += (str(display_source_node(node, 1000)) + "\n")
output_str += "* * * * * * * * * * * *"
output_str += "]"
return (output_str)
def handle(self, event: BaseEvent, **kwargs: Any) -> None:
"""Logic for handling event."""
logger.info("-----------------------")
# all events have these attributes
logger.info(event.id_)
logger.info(event.timestamp)
logger.info(event.span_id)
# event specific attributes
logger.info(f"Event type: {event.class_name()}")
if isinstance(event, AgentRunStepStartEvent):
# logger.info(event.task_id)
logger.info(event.step)
logger.info(event.input)
if isinstance(event, AgentRunStepEndEvent):
logger.info(event.step_output)
if isinstance(event, AgentChatWithStepStartEvent):
logger.info(event.user_msg)
if isinstance(event, AgentChatWithStepEndEvent):
logger.info(event.response)
if isinstance(event, AgentToolCallEvent):
logger.info(event.arguments)
logger.info(event.tool.name)
logger.info(event.tool.description)
if isinstance(event, StreamChatDeltaReceivedEvent):
logger.info(event.delta)
if isinstance(event, StreamChatErrorEvent):
logger.info(event.exception)
if isinstance(event, EmbeddingStartEvent):
logger.info(event.model_dict)
if isinstance(event, EmbeddingEndEvent):
logger.info(event.chunks)
logger.info(event.embeddings[0][:5]) # avoid printing all embeddings
if isinstance(event, LLMPredictStartEvent):
logger.info(event.template)
logger.info(event.template_args)
if isinstance(event, LLMPredictEndEvent):
logger.info(event.output)
if isinstance(event, LLMStructuredPredictStartEvent):
logger.info(event.template)
logger.info(event.template_args)
logger.info(event.output_cls)
if isinstance(event, LLMStructuredPredictEndEvent):
logger.info(event.output)
if isinstance(event, LLMCompletionStartEvent):
logger.info(event.model_dict)
logger.info(event.prompt)
logger.info(event.additional_kwargs)
if isinstance(event, LLMCompletionEndEvent):
logger.info(event.response)
logger.info(event.prompt)
if isinstance(event, LLMChatInProgressEvent):
logger.info(event.messages)
logger.info(event.response)
if isinstance(event, LLMChatStartEvent):
logger.info(event.messages)
logger.info(event.additional_kwargs)
logger.info(event.model_dict)
if isinstance(event, LLMChatEndEvent):
logger.info(event.messages)
logger.info(event.response)
if isinstance(event, RetrievalStartEvent):
logger.info(event.str_or_query_bundle)
if isinstance(event, RetrievalEndEvent):
logger.info(event.str_or_query_bundle)
# logger.info(event.nodes)
logger.info(self._print_event_nodes(event.nodes))
if isinstance(event, ReRankStartEvent):
logger.info(event.query)
# logger.info(event.nodes)
for node in event.nodes:
logger.info(display_source_node(node))
logger.info(event.top_n)
logger.info(event.model_name)
if isinstance(event, ReRankEndEvent):
# logger.info(event.nodes)
logger.info(self._print_event_nodes(event.nodes))
if isinstance(event, QueryStartEvent):
logger.info(event.query)
if isinstance(event, QueryEndEvent):
logger.info(event.response)
logger.info(event.query)
if isinstance(event, SpanDropEvent):
logger.info(event.err_str)
if isinstance(event, SynthesizeStartEvent):
logger.info(event.query)
if isinstance(event, SynthesizeEndEvent):
logger.info(event.response)
logger.info(event.query)
if isinstance(event, GetResponseStartEvent):
logger.info(event.query_str)
self.events.append(event)
logger.info("-----------------------")
def _get_events_by_span(self) -> dict[str, list[BaseEvent]]:
events_by_span: dict[str, list[BaseEvent]] = {}
for event in self.events:
if event.span_id in events_by_span:
events_by_span[event.span_id].append(event)
elif (event.span_id is not None):
events_by_span[event.span_id] = [event]
return events_by_span
def _get_event_span_trees(self) -> list[Tree]:
events_by_span = self._get_events_by_span()
trees = []
tree = Tree()
for span, sorted_events in events_by_span.items():
# create root node i.e. span node
tree.create_node(
tag=f"{span} (SPAN)",
identifier=span,
parent=None,
data=sorted_events[0].timestamp,
)
for event in sorted_events:
tree.create_node(
tag=f"{event.class_name()}: {event.id_}",
identifier=event.id_,
parent=event.span_id,
data=event.timestamp,
)
trees.append(tree)
tree = Tree()
return trees
def print_event_span_trees(self) -> None:
"""View trace trees."""
trees = self._get_event_span_trees()
for tree in trees:
logger.info(
tree.show(
stdout=False, sorting=True, key=lambda node: node.data
)
)
logger.info("")
class RAGSpanHandler(BaseSpanHandler[SimpleSpan]):
span_dict: dict = {}
@classmethod
def class_name(cls) -> str:
"""Class name."""
return "ExampleSpanHandler"
def new_span(
self,
id_: str,
bound_args: Any,
instance: Any | None = None,
parent_span_id: str | None = None,
**kwargs: Any,
) -> SimpleSpan | None:
"""Create a span."""
# logic for creating a new MyCustomSpan
if id_ not in self.span_dict:
self.span_dict[id_] = []
self.span_dict[id_].append(
SimpleSpan(id_=id_, parent_id=parent_span_id)
)
def prepare_to_exit_span(
self,
id_: str,
bound_args: Any,
instance: Any | None = None,
result: Any | None = None,
**kwargs: Any,
) -> Any:
"""Logic for preparing to exit a span."""
# if id in self.span_dict:
# return self.span_dict[id].pop()
def prepare_to_drop_span(
self,
id_: str,
bound_args: Any,
instance: Any | None = None,
err: BaseException | None = None,
**kwargs: Any,
) -> Any:
"""Logic for preparing to drop a span."""
# if id in self.span_dict:
# return self.span_dict[id].pop()
def get_obs() -> Dispatcher:
"""Get observability for the RAG pipeline."""
dispatcher = get_dispatcher()
event_handler = RAGEventHandler()
span_handler = RAGSpanHandler()
dispatcher.add_event_handler(event_handler)
dispatcher.add_span_handler(span_handler)
return dispatcher
|