Spaces:
Paused
Paused
File size: 26,336 Bytes
89cbc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
#####################################################
### DOCUMENT PROCESSOR [PDF READER]
#####################################################
# Jonathan Wang
# ABOUT:
# This project creates an app to chat with PDFs.
# This is the PDF READER.
# It converts a PDF into LlamaIndex nodes
# using UnstructuredIO.
#####################################################
# TODO Board:
# I don't think the current code is elegent... :(
# TODO: Replace chunk_by_header with a custom solution replicating bySimilarity
# https://docs.unstructured.io/api-reference/api-services/chunking#by-similarity-chunking-strategy
# Some hybrid thing...
# Come up with a awy to handle summarizing images and tables using MultiModalLLM after the processing into nodes.
# TODO: Put this into PDFReaderUtilities? Along with the other functions for stuff like email?
# Investigate PDFPlumber as a backup/alternative for Unstructured.
# `https://github.com/jsvine/pdfplumber`
# nevermind, this is essentially pdfminer.six but nicer
# Chunk hierarchy from https://www.reddit.com/r/LocalLLaMA/comments/1dpb9ow/how_we_chunk_turning_pdfs_into_hierarchical/
# Investigate document parsing algorithms from https://github.com/BobLd/DocumentLayoutAnalysis?tab=readme-ov-file
# Investigate document parsing algorithms from https://github.com/Filimoa/open-parse?tab=readme-ov-file
# Competition:
# https://github.com/infiniflow/ragflow
# https://github.com/deepdoctection/deepdoctection
#####################################################
## IMPORTS
import os
import re
import regex
from copy import deepcopy
from abc import ABC, abstractmethod
from typing import Any, List, Tuple, IO, Optional, Type, Generic, TypeVar
from llama_index.core.bridge.pydantic import Field
import numpy as np
from io import BytesIO
from base64 import b64encode, b64decode
from PIL import Image as PILImage
# from pdf_reader_utils import clean_pdf_chunk, dedupe_title_chunks, combine_listitem_chunks
# Unstructured Document Parsing
from unstructured.partition.pdf import partition_pdf
# from unstructured.cleaners.core import clean_extra_whitespace, group_broken_paragraphs #, clean_ordered_bullets, clean_bullets, clean_dashes
# from unstructured.chunking.title import chunk_by_title
# Unstructured Element Types
from unstructured.documents import elements, email_elements
from unstructured.partition.utils.constants import PartitionStrategy
# Llamaindex Nodes
from llama_index.core.settings import Settings
from llama_index.core.schema import Document, BaseNode, TextNode, ImageNode, NodeRelationship, RelatedNodeInfo
from llama_index.core.readers.base import BaseReader
from llama_index.core.base.embeddings.base import BaseEmbedding
from llama_index.core.node_parser import NodeParser
# Parallelism for cleaning chunks
from joblib import Parallel, delayed
## Lazy Imports
# import nltk
#####################################################
# Additional padding around the PDF extracted images
PDF_IMAGE_HORIZONTAL_PADDING = 20
PDF_IMAGE_VERTICAL_PADDING = 20
os.environ['EXTRACT_IMAGE_BLOCK_CROP_HORIZONTAL_PAD'] = str(PDF_IMAGE_HORIZONTAL_PADDING)
os.environ['EXTRACT_IMAGE_BLOCK_CROP_VERTICAL_PAD'] = str(PDF_IMAGE_VERTICAL_PADDING)
# class TextReader(BaseReader):
# def __init__(self, text: str) -> None:
# """Init params."""
# self.text = text
# class ImageReader(BaseReader):
# def __init__(self, image: Any) -> None:
# """Init params."""
# self.image = image
GenericNode = TypeVar("GenericNode", bound=BaseNode) # https://mypy.readthedocs.io/en/stable/generics.html
class UnstructuredPDFReader():
# Yes, we could inherit from LlamaIndex BaseReader even though I don't think it's a good idea.
# Have you seen the Llamaindex Base Reader? It's silly. """OOP"""
# https://docs.llamaindex.ai/en/stable/api_reference/readers/
# here I'm basically cargo culting off the (not-very-good) pre-built Llamaindex one.
# https://github.com/run-llama/llama_index/blob/main/llama-index-integrations/readers/llama-index-readers-file/llama_index/readers/file/unstructured/base.py
# yes I do want to bind these to the class.
# you better not be changing the embedding model or node parser on me across different PDFReaders. that's absurd.
# embed_model: BaseEmbedding
# _node_parser: NodeParser# = Field(
# description="Node parser to run on each Unstructured Title Chunk",
# default=Settings.node_parser,
# )
_max_characters: int# = Field(
# description="The maximum number of characters in a node",
# default=8192,
# )
_new_after_n_chars: int #= Field(
# description="The number of characters after which a new node is created",
# default=1024,
# )
_overlap_n_chars: int #= Field(
# description="The number of characters to overlap between nodes",
# default=128,
# )
_overlap: int #= Field(
# description="The number of characters to overlap between nodes",
# default=128,
# )
_overlap_all: bool #= Field(
# description="Whether to overlap all nodes",
# default=False,
# )
_multipage_sections: bool #= Field(
# description="Whether to include multipage sections",
# default=False,
# )
## TODO: Fix this big ball of primiatives and turn it into a class.
def __init__(
self,
# node_parser: Optional[NodeParser], # Suggest using a SemanticNodeParser.
max_characters: int = 2048,
new_after_n_chars: int = 512,
overlap_n_chars: int = 128,
overlap: int = 128,
overlap_all: bool = False,
multipage_sections: bool = True,
**kwargs: Any
) -> None:
# node_parser = node_parser or Settings.node_parser
"""Init params."""
super().__init__(**kwargs)
self._max_characters = max_characters
self._new_after_n_chars = new_after_n_chars
self._overlap_n_chars = overlap_n_chars
self._overlap = overlap
self._overlap_all = overlap_all
self._multipage_sections = multipage_sections
# self._node_parser = node_parser or Settings.node_parser # set node parser to run on each Unstructured Title Chunk
# Prerequisites for Unstructured.io to work
# import nltk
# nltk.data.path = ['./nltk_data']
# try:
# if not nltk.data.find("tokenizers/punkt"):
# # nltk.download("punkt")
# print("Can't find punkt.")
# except Exception as e:
# # nltk.download("punkt")
# print(e)
# try:
# if not nltk.data.find("taggers/averaged_perceptron_tagger"):
# # nltk.download("averaged_perceptron_tagger")
# print("Can't find averaged_perceptron_tagger.")
# except Exception as e:
# # nltk.download("averaged_perceptron_tagger")
# print(e)
# """DATA LOADING FUNCTIONS"""
def _node_rel_prev_next(self, prev_node: GenericNode, next_node: GenericNode) -> Tuple[GenericNode, GenericNode]:
"""Update pre-next node relationships between two nodes."""
prev_node.relationships[NodeRelationship.NEXT] = RelatedNodeInfo(
node_id=next_node.node_id,
metadata={"filename": next_node.metadata['filename']}
)
next_node.relationships[NodeRelationship.PREVIOUS] = RelatedNodeInfo(
node_id=prev_node.node_id,
metadata={"filename": prev_node.metadata['filename']}
)
return (prev_node, next_node)
def _node_rel_parent_child(self, parent_node: GenericNode, child_node: GenericNode) -> Tuple[GenericNode, GenericNode]:
"""Update parent-child node relationships between two nodes."""
parent_node.relationships[NodeRelationship.CHILD] = RelatedNodeInfo(
node_id=child_node.node_id,
metadata={"filename": child_node.metadata['filename']}
)
child_node.relationships[NodeRelationship.PARENT] = RelatedNodeInfo(
node_id=parent_node.node_id,
metadata={"filename": parent_node.metadata['filename']}
)
return (parent_node, child_node)
def _handle_metadata(
self,
pdf_chunk: elements.Element,
node: GenericNode,
kept_metadata: List[str] = [
'filename', 'file_directory', 'coordinates',
'page_number', 'page_name', 'section',
'sent_from', 'sent_to', 'subject',
'parent_id', 'category_depth',
'text_as_html', 'languages',
'emphasized_text_contents', 'link_texts', 'link_urls',
'is_continuation', 'detection_class_prob',
]) -> GenericNode:
"""Add common unstructured element metadata to LlamaIndex node."""
pdf_chunk_metadata = pdf_chunk.metadata.to_dict() if pdf_chunk.metadata else {}
current_kept_metadata = deepcopy(kept_metadata)
# Handle some interesting keys
node.metadata['type'] = pdf_chunk.category
if (('filename' in current_kept_metadata) and ('filename' in pdf_chunk_metadata) and ('file_directory' in pdf_chunk_metadata)):
filename = os.path.join(str(pdf_chunk_metadata['file_directory']), str(pdf_chunk_metadata['filename']))
node.metadata['filename'] = filename
current_kept_metadata.remove('file_directory') if ('file_directory' in current_kept_metadata) else None
if (('text_as_html' in current_kept_metadata) and ('text_as_html' in pdf_chunk_metadata)):
node.metadata['orignal_table_text'] = getattr(node, 'text', '')
node.text = pdf_chunk_metadata['text_as_html']
current_kept_metadata.remove('text_as_html')
if (('coordinates' in current_kept_metadata) and (pdf_chunk_metadata.get('coordinates') is not None)):
node.metadata['coordinates'] = pdf_chunk_metadata['coordinates']
current_kept_metadata.remove('coordinates')
if (('page_number' in current_kept_metadata) and ('page_number' in pdf_chunk_metadata)):
node.metadata['page_number'] = [pdf_chunk_metadata['page_number']] # save as list to allow for multiple pages
current_kept_metadata.remove('page_number')
if (('page_name' in current_kept_metadata) and ('page_name' in pdf_chunk_metadata)):
node.metadata['page_name'] = [pdf_chunk_metadata['page_name']] # save as list to allow for multiple sheets
current_kept_metadata.remove('page_name')
# Handle the remaining keys
for key in set(current_kept_metadata).intersection(set(pdf_chunk_metadata.keys())):
node.metadata[key] = pdf_chunk_metadata[key]
return node
def _handle_text_chunk(self, pdf_text_chunk: elements.Element) -> TextNode:
"""Given a text chunk from Unstructured, convert it to a TextNode for LlamaIndex.
Args:
pdf_text_chunk (elements.Element): Input text chunk from Unstructured.
Returns:
TextNode: LlamaIndex TextNode which saves the text as HTML for structure.
"""
new_node = TextNode(
text=pdf_text_chunk.text,
id_=pdf_text_chunk.id,
excluded_llm_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'orignal_table_text', 'languages', 'detection_class_prob', 'keyword_metadata'],
excluded_embed_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'page number', 'original_text', 'window', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'orignal_table_text', 'languages', 'detection_class_prob']
)
new_node = self._handle_metadata(pdf_text_chunk, new_node)
return (new_node)
def _handle_table_chunk(self, pdf_table_chunk: elements.Table | elements.TableChunk) -> TextNode:
"""Given a table chunk from Unstructured, convert it to a TextNode for LlamaIndex.
Args:
pdf_table_chunk (elements.Table | elements.TableChunk): Input table chunk from Unstructured
Returns:
TextNode: LlamaIndex TextNode which saves the table as HTML for structure.
NOTE: You will need to get the summary of the table for better performance.
"""
new_node = TextNode(
text=pdf_table_chunk.metadata.text_as_html if pdf_table_chunk.metadata.text_as_html else pdf_table_chunk.text,
id_=pdf_table_chunk.id,
excluded_llm_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'orignal_table_text', 'languages', 'detection_class_prob', 'keyword_metadata'],
excluded_embed_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'page number', 'original_text', 'window', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'orignal_table_text', 'languages', 'detection_class_prob']
)
new_node = self._handle_metadata(pdf_table_chunk, new_node)
return (new_node)
def _handle_image_chunk(self, pdf_image_chunk: elements.Element) -> ImageNode:
"""Given an image chunk from UnstructuredIO, read it in and convert it into a Llamaindex ImageNode.
Args:
pdf_image_chunk (elements.Element): The input image element from UnstructuredIO. We'll allow all types, just in case you want to process some weird chunks.
Returns:
ImageNode: The image saved as a Llamaindex ImageNode.
"""
pdf_image_chunk_data_available = pdf_image_chunk.metadata.to_dict()
# Check for either saved image_path or image_base64/image_mime_type
if (('image_path' not in pdf_image_chunk_data_available) and ('image_base64' not in pdf_image_chunk_data_available)):
raise Exception('Image chunk does not have either image_path or image_base64/image_mime_type. Are you sure this is an image?')
# Make the image node.
new_node = ImageNode(
text=pdf_image_chunk.text,
id_=pdf_image_chunk.id,
excluded_llm_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'languages', 'detection_class_prob', 'keyword_metadata'],
excluded_embed_metadata_keys=['type', 'parent_id', 'depth', 'filename', 'coordinates', 'page number', 'original_text', 'window', 'link_texts', 'link_urls', 'link_start_indexes', 'orig_nodes', 'languages', 'detection_class_prob']
)
new_node = self._handle_metadata(pdf_image_chunk, new_node)
# Add image data to image node
image = None
if ('image_path' in pdf_image_chunk_data_available):
# Save image path to image node
new_node.image_path = pdf_image_chunk_data_available['image_path']
# Load image from path, convert to base64
image_pil = PILImage.open(pdf_image_chunk_data_available['image_path'])
image_buffer = BytesIO()
image_pil.save(image_buffer, format='JPEG')
image = b64encode(image_buffer.getvalue()).decode('utf-8')
new_node.image = image
new_node.image_mimetype = 'image/jpeg'
del image_buffer, image_pil
elif ('image_base64' in pdf_image_chunk_data_available):
# Save image base64 to image node
new_node.image = pdf_image_chunk_data_available['image_base64']
new_node.image_mimetype = pdf_image_chunk_data_available['image_mime_type']
return (new_node)
def _handle_composite_chunk(self, pdf_composite_chunk: elements.CompositeElement) -> BaseNode:
"""Given a composite chunk from Unstructured, convert it into a node and handle it dependencies as well."""
# Start by getting a list of all the nodes which were combined into the composite chunk.
# child_chunks = pdf_composite_chunk.metadata.to_dict()['orig_elements']
child_chunks = pdf_composite_chunk.metadata.orig_elements or []
child_nodes = []
for chunk in child_chunks:
child_nodes.append(self._handle_chunk(chunk)) # process all the child chunks.
# Then build the Composite Chunk into a Node.
composite_node = self._handle_text_chunk(pdf_text_chunk=pdf_composite_chunk)
composite_node = self._handle_metadata(pdf_composite_chunk, composite_node)
# Set relationships between chunks.
for index in range(1, len(child_nodes)):
child_nodes[index-1], child_nodes[index] = self._node_rel_prev_next(child_nodes[index-1], child_nodes[index])
for index, node in enumerate(child_nodes):
composite_node, child_nodes[index] = self._node_rel_parent_child(composite_node, child_nodes[index])
composite_node.metadata['orig_nodes'] = child_nodes
composite_node.excluded_llm_metadata_keys = ['filename', 'coordinates', 'chunk_number', 'window', 'orig_nodes', 'languages', 'detection_class_prob', 'keyword_metadata']
composite_node.excluded_embed_metadata_keys = ['filename', 'coordinates', 'chunk_number', 'page number', 'original_text', 'window', 'summary', 'orig_nodes', 'languages', 'detection_class_prob']
return(composite_node)
def _handle_chunk(self, chunk: elements.Element) -> BaseNode:
"""Convert Unstructured element chunks to Llamaindex Node. Determine which chunk handling to use based on the element type."""
# Composite (multiple nodes combined together by chunking)
if (isinstance(chunk, elements.CompositeElement)):
return (self._handle_composite_chunk(pdf_composite_chunk=chunk))
# Tables
elif ((chunk.category == 'Table') and isinstance(chunk, (elements.Table, elements.TableChunk))):
return(self._handle_table_chunk(pdf_table_chunk=chunk))
# Images
elif (any(True for chunk_info in ['image', 'image_base64', 'image_path'] if chunk_info in chunk.metadata.to_dict())):
return(self._handle_image_chunk(pdf_image_chunk=chunk))
# Text
else:
return(self._handle_text_chunk(pdf_text_chunk=chunk))
def pdf_to_chunks(
self,
file_path: Optional[str],
file: Optional[IO[bytes]],
) -> List[elements.Element]:
"""
Given the file path to a PDF, read it in with UnstructuredIO and return its elements.
"""
print("NEWPDF: Partitioning into Chunks...")
# 1. attempt using AUTO to have it decide.
# NOTE: this takes care of pdfminer, and also choses between using detectron2 vs tesseract only.
# However, it sometimes gets confused by PDFs where text elements are added on later, e.g., CIDs for linking, or REDACTED
pdf_chunks = partition_pdf(
filename=file_path,
file=file,
unique_element_ids=True, # UUIDs that are unique for each element
strategy=PartitionStrategy.HI_RES, # auto: it decides, hi_res: detectron2, but issues with multi-column, ocr_only: pytesseract, fast: pdfminer
hi_res_model_name='yolox',
include_page_breaks=False,
metadata_filename=file_path,
infer_table_structure=True,
extract_images_in_pdf=True,
extract_image_block_types=['Image', 'Table', 'Formula'], # element types to save as images
extract_image_block_to_payload=False, # needs to be false; we'll convert into base64 later.
extract_forms=False, # not currently available
extract_image_block_output_dir=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data/pdfimgs/')
)
# # 2. Check if it got good output.
# pdf_read_in_okay = self.check_pdf_read_in(pdf_file_path=pdf_file_path, pdf_file=pdf_file, pdf_chunks=pdf_chunks)
# if (pdf_read_in_okay):
# return pdf_chunks
# # 3. Okay, PDF didn't read in well, so we'll use the back-up strategy
# # According to Unstructured's Github: https://github.com/Unstructured-IO/unstructured/blob/main/unstructured/partition/pdf.py
# # that is "OCR_ONLY" as opposed to "HI_RES".
# pdf_chunks = partition_pdf(
# filename=pdf_file_path,
# file=pdf_file,
# strategy="ocr_only" # auto: it decides, hi_res: detectron2, but issues with multi-column, ocr_only: pytesseract, fast: pdfminer
# )
return pdf_chunks
def chunks_to_nodes(self, pdf_chunks: List[elements.Element]) -> List[BaseNode]:
"""
Given a PDF from Unstructured broken by header,
convert them into nodes using the node_parser.
E.g., to have all sentences with similar meaning as a node, use the SemanticNodeParser
"""
# 0. Setup.
unstructured_chunk_nodes = []
# Hash of node ID and index
node_id_to_index = {}
# 1. Convert each page's text to Nodes.
for index, chunk in enumerate(pdf_chunks):
# Create new node based on node type
new_node = self._handle_chunk(chunk)
# Update hash of node ID and index
node_id_to_index[new_node.id_] = index
# Add relationship to prior node
if (len(unstructured_chunk_nodes) > 0):
unstructured_chunk_nodes[-1], new_node = self._node_rel_prev_next(prev_node=unstructured_chunk_nodes[-1], next_node=new_node)
# Add parent-child relationships for Title Chunks
if (chunk.metadata.parent_id is not None):
# Find the index of the parent node based on parent_id
parent_index = node_id_to_index[chunk.metadata.parent_id]
if (parent_index is not None):
unstructured_chunk_nodes[parent_index], new_node = self._node_rel_parent_child(parent_node=unstructured_chunk_nodes[parent_index], child_node=new_node)
# Append to list
unstructured_chunk_nodes.append(new_node)
del node_id_to_index
## TODO: Move this chunk into a separate ReaderPostProcessor thing into PDFReaderUtils. Bundle in the sumamrization for tables and images into this.
# 2. Node Parse each page to split when new information is different
# NOTE: This was built for the Semantic Parser, but I guess we'll technically allow any parser here.
# unstructured_parsed_nodes = self._node_parser.get_nodes_from_documents(unstructured_chunk_nodes)
# 3. Node Attributes
# for index, node in enumerate(unstructured_parsed_nodes):
# # Keywords and Summary
# # node_keywords = ', '.join(pdfrutils.get_keywords(node.text, top_k=5))
# # node_summary = get_t5_summary(node.text, summary_length=64) # get_t5_summary
# node.metadata['keywords'] = node_keywords
# # node.metadata['summary'] = node_summary + (("\n" + node.metadata['summary']) if node.metadata['summary'] is not None else "")
# # Get additional information about the node.
# # Email: check for address.
# info_types = []
# if (pdfrutils.has_date(node.text)):
# info_types.append("date")
# if (pdfrutils.has_email(node.text)):
# info_types.append("contact email")
# if (pdfrutils.has_mail_addr(node.text)):
# info_types.append("mailing postal address")
# if (pdfrutils.has_phone(node.text)):
# info_types.append("contact phone")
# node.metadata['information types'] = ", ".join(info_types)
# node.excluded_llm_metadata_keys = ['filename', 'coordinates', 'chunk_number', 'window', 'orig_nodes']
# node.excluded_embed_metadata_keys = ['filename', 'coordinates', 'chunk_number', 'page number', 'original_text', 'window', 'keywords', 'summary', 'orig_nodes']
# if (index > 0):
# unstructured_parsed_nodes[index-1], node = self._node_rel_prev_next(unstructured_parsed_nodes[index-1], node)
return(unstructured_chunk_nodes)
# """Main user-interaction function"""
def load_data(
self,
file_path: Optional[str] = None,
file: Optional[IO[bytes]] = None
) -> List: #[GenericNode]:
"""Given a path to a PDF file, load it with Unstructured and convert it into a list of Llamaindex Base Nodes.
Input:
- pdf_file_path (str): the path to the PDF file.
Output:
- List[GenericNode]: a list of LlamaIndex nodes. Creates one node for each parsed node, for each Unstructured Title Chunk.
"""
# 1. PDF to Chunks
print("NEWPDF: Reading Input File...")
pdf_chunks = self.pdf_to_chunks(file_path=file_path, file=file)
# return (pdf_chunks)
# Chunk processing
# pdf_chunks = clean_pdf_chunk, dedupe_title_chunks, combine_listitem_chunks, remove_header_footer_pagenum
# 2. Chunks to titles
# TODO: I hate this, make our own chunker.
# pdf_titlechunks = chunk_by_title(
# pdf_chunks,
# max_characters=self._max_characters,
# new_after_n_chars=self._new_after_n_chars,
# overlap=self._overlap,
# overlap_all=self._overlap_all,
# multipage_sections=self._multipage_sections,
# include_orig_elements=True,
# combine_text_under_n_chars=self._new_after_n_chars
# )
# 3. Cleaning
# pdf_titlechunks = Parallel(n_jobs=max(int(os.cpu_count())-1, 1))( # type: ignore
# delayed(self.clean_pdf_chunk)(chunk) for chunk in pdf_chunks # pdf_titlechunks
# )
# pdf_titlechunks = list(pdf_titlechunks)
# 4. Headlines to llamaindex nodes
print("NEWPDF: Converting chunks to nodes...")
parsed_chunks = self.chunks_to_nodes(pdf_chunks)
return (parsed_chunks) |