Spaces:
Running
on
Zero
Running
on
Zero
update gradio examples
Browse files- app.py +33 -31
- gradio_cached_examples/18/Generated Image/39941882bacd2ca28afc/image.webp +0 -0
- gradio_cached_examples/18/Generated Image/5f053b78177fa3272b0c/image.webp +0 -0
- gradio_cached_examples/18/indices.csv +2 -0
- gradio_cached_examples/18/log.csv +3 -0
- gradio_cached_examples/20/Generated Image/1c15f96417dfc872dde9/image.webp +0 -0
- gradio_cached_examples/20/Generated Image/7003c566c19b7f282686/image.webp +0 -0
- gradio_cached_examples/20/Generated Image/cb25215afd568f92f343/image.webp +0 -0
- gradio_cached_examples/20/Generated Image/ffb6d87910f6ca2b2f72/image.webp +0 -0
- gradio_cached_examples/20/indices.csv +4 -0
- gradio_cached_examples/20/log.csv +5 -0
app.py
CHANGED
@@ -12,29 +12,29 @@ pipe = StableDiffusion3InstructPix2PixPipeline.from_pretrained("BleachNick/SD3_U
|
|
12 |
pipe = pipe.to("cuda")
|
13 |
|
14 |
|
15 |
-
|
16 |
@spaces.GPU(duration=20)
|
17 |
def generate(image_mask, prompt, num_inference_steps=50, image_guidance_scale=1.6, guidance_scale=7.5, seed=255):
|
18 |
def is_blank_mask(mask_img):
|
19 |
-
# Convert the mask to a numpy array and check if all values are 0 (black/transparent)
|
20 |
mask_array = np.array(mask_img.convert('L')) # Convert to luminance to simplify the check
|
21 |
return np.all(mask_array == 0)
|
22 |
-
|
23 |
seed = int(seed)
|
24 |
generator = torch.manual_seed(seed)
|
25 |
|
26 |
img = image_mask["background"].convert("RGB")
|
27 |
mask_img = image_mask["layers"][0].getchannel('A').convert("RGB")
|
28 |
|
29 |
-
# Central crop to desired size
|
30 |
desired_size = (512, 512)
|
31 |
|
32 |
img = ImageOps.fit(img, desired_size, method=Image.LANCZOS, centering=(0.5, 0.5))
|
33 |
mask_img = ImageOps.fit(mask_img, desired_size, method=Image.LANCZOS, centering=(0.5, 0.5))
|
34 |
|
35 |
if is_blank_mask(mask_img):
|
36 |
-
# Create a mask of the same size with all values set to 255 (white)
|
37 |
mask_img = PIL.Image.new('RGB', img.size, color=(255, 255, 255))
|
|
|
|
|
|
|
|
|
38 |
mask_img = mask_img.convert('RGB')
|
39 |
|
40 |
image = pipe(
|
@@ -47,7 +47,8 @@ def generate(image_mask, prompt, num_inference_steps=50, image_guidance_scale=1.
|
|
47 |
generator=generator
|
48 |
).images[0]
|
49 |
|
50 |
-
return image
|
|
|
51 |
|
52 |
example_lists=[
|
53 |
|
@@ -64,36 +65,30 @@ example_lists=[
|
|
64 |
]
|
65 |
mask_ex_list = []
|
66 |
for exp in example_lists:
|
67 |
-
ex_dict= {}
|
68 |
ex_dict['background'] = exp[0][0]
|
69 |
-
ex_dict['layers'] =
|
70 |
-
ex_dict['composite'] =
|
71 |
-
re_list = [ex_dict, exp[1],exp[2],exp[3],exp[4],exp[5]]
|
72 |
mask_ex_list.append(re_list)
|
73 |
|
74 |
-
|
75 |
-
# shape=(512, 512))
|
76 |
-
image_mask_input = gr.ImageMask(sources='upload',type="pil",label="Input Image: Mask with pen or leave unmasked",transforms=(),layers=False)
|
77 |
prompt_input = gr.Textbox(label="Prompt")
|
78 |
num_inference_steps_input = gr.Slider(minimum=0, maximum=100, value=50, label="Number of Inference Steps")
|
79 |
image_guidance_scale_input = gr.Slider(minimum=0.0, maximum=2.5, value=1.5, label="Image Guidance Scale")
|
80 |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=17.5, value=12.5, label="Guidance Scale")
|
81 |
seed_input = gr.Textbox(value="255", label="Random Seed")
|
82 |
|
83 |
-
inputs = [image_mask_input, prompt_input, num_inference_steps_input, image_guidance_scale_input, guidance_scale_input,
|
84 |
-
|
85 |
-
outputs = gr.Image(label="Generated Image")
|
86 |
-
|
87 |
|
88 |
-
# Custom HTML content
|
89 |
article_html = """
|
90 |
<div style="text-align: center; max-width: 1000px; margin: 20px auto; font-family: Arial, sans-serif;">
|
91 |
<h2 style="font-weight: 900; font-size: 2.5rem; margin-bottom: 0.5rem;">
|
92 |
🖼️ UltraEdit for Fine-Grained Image Editing
|
93 |
</h2>
|
94 |
<div style="margin-bottom: 1rem;">
|
95 |
-
<h3 style="font-weight: 500; font-size: 1.25rem; margin: 0;">
|
96 |
-
</h3>
|
97 |
<p style="font-weight: 400; font-size: 1rem; margin: 0.5rem 0;">
|
98 |
Haozhe Zhao<sup>1*</sup>, Xiaojian Ma<sup>2*</sup>, Liang Chen<sup>1</sup>, Shuzheng Si<sup>1</sup>, Rujie Wu<sup>1</sup>,
|
99 |
Kaikai An<sup>1</sup>, Peiyu Yu<sup>3</sup>, Minjia Zhang<sup>4</sup>, Qing Li<sup>2</sup>, Baobao Chang<sup>2</sup>
|
@@ -109,7 +104,7 @@ article_html = """
|
|
109 |
<a href="https://huggingface.co/datasets/BleachNick/UltraEdit_500k" style="display: flex; align-items: center; text-decoration: none; color: blue; font-weight: bold; gap: 0.5rem;">
|
110 |
<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" alt="Dataset_500k" style="height: 20px; vertical-align: middle;"> Dataset_500k
|
111 |
</a>
|
112 |
-
|
113 |
<span style="font-size: 20px; vertical-align: middle;">🔗</span> Page
|
114 |
</a>
|
115 |
<a href="https://huggingface.co/BleachNick/SD3_UltraEdit_w_mask" style="display: flex; align-items: center; text-decoration: none; color: blue; font-weight: bold; gap: 0.5rem;">
|
@@ -121,29 +116,36 @@ article_html = """
|
|
121 |
</div>
|
122 |
<div style="text-align: left; margin: 0 auto; font-size: 1rem; line-height: 1.5;">
|
123 |
<p>
|
124 |
-
|
125 |
</p>
|
126 |
<p>
|
127 |
-
This demo allows you to perform image editing using the <a href="https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers" style="color: blue; text-decoration: none;">Stable Diffusion 3</a> model trained with this extensive dataset. It supports both free-form (without mask) and region-based (with mask) image editing. Use the sliders to adjust the inference steps and guidance scales, and provide a seed for reproducibility. The image guidance scale of 1.5 and
|
128 |
</p>
|
|
|
|
|
|
|
129 |
</div>
|
130 |
</div>
|
131 |
"""
|
132 |
-
html='''
|
133 |
<div style="text-align: left; margin-top: 2rem; font-size: 0.85rem; color: gray;">
|
134 |
-
<
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
</div>
|
138 |
'''
|
|
|
139 |
demo = gr.Interface(
|
140 |
fn=generate,
|
141 |
inputs=inputs,
|
142 |
outputs=outputs,
|
143 |
-
description=article_html,
|
144 |
-
article
|
145 |
examples=mask_ex_list
|
146 |
)
|
147 |
|
148 |
-
demo.queue().launch()
|
149 |
-
|
|
|
12 |
pipe = pipe.to("cuda")
|
13 |
|
14 |
|
|
|
15 |
@spaces.GPU(duration=20)
|
16 |
def generate(image_mask, prompt, num_inference_steps=50, image_guidance_scale=1.6, guidance_scale=7.5, seed=255):
|
17 |
def is_blank_mask(mask_img):
|
|
|
18 |
mask_array = np.array(mask_img.convert('L')) # Convert to luminance to simplify the check
|
19 |
return np.all(mask_array == 0)
|
20 |
+
|
21 |
seed = int(seed)
|
22 |
generator = torch.manual_seed(seed)
|
23 |
|
24 |
img = image_mask["background"].convert("RGB")
|
25 |
mask_img = image_mask["layers"][0].getchannel('A').convert("RGB")
|
26 |
|
|
|
27 |
desired_size = (512, 512)
|
28 |
|
29 |
img = ImageOps.fit(img, desired_size, method=Image.LANCZOS, centering=(0.5, 0.5))
|
30 |
mask_img = ImageOps.fit(mask_img, desired_size, method=Image.LANCZOS, centering=(0.5, 0.5))
|
31 |
|
32 |
if is_blank_mask(mask_img):
|
|
|
33 |
mask_img = PIL.Image.new('RGB', img.size, color=(255, 255, 255))
|
34 |
+
editing_mode = "Free-form"
|
35 |
+
else:
|
36 |
+
editing_mode = "Region-based"
|
37 |
+
|
38 |
mask_img = mask_img.convert('RGB')
|
39 |
|
40 |
image = pipe(
|
|
|
47 |
generator=generator
|
48 |
).images[0]
|
49 |
|
50 |
+
return image, f"Editing Mode: {editing_mode}"
|
51 |
+
|
52 |
|
53 |
example_lists=[
|
54 |
|
|
|
65 |
]
|
66 |
mask_ex_list = []
|
67 |
for exp in example_lists:
|
68 |
+
ex_dict = {}
|
69 |
ex_dict['background'] = exp[0][0]
|
70 |
+
ex_dict['layers'] = [exp[0][1], exp[0][2]]
|
71 |
+
ex_dict['composite'] = exp[0][2]
|
72 |
+
re_list = [ex_dict, exp[1], exp[2], exp[3], exp[4], exp[5]]
|
73 |
mask_ex_list.append(re_list)
|
74 |
|
75 |
+
image_mask_input = gr.ImageMask(sources='upload', type="pil", label="Input Image: Mask with pen or leave unmasked", transforms=(), layers=False)
|
|
|
|
|
76 |
prompt_input = gr.Textbox(label="Prompt")
|
77 |
num_inference_steps_input = gr.Slider(minimum=0, maximum=100, value=50, label="Number of Inference Steps")
|
78 |
image_guidance_scale_input = gr.Slider(minimum=0.0, maximum=2.5, value=1.5, label="Image Guidance Scale")
|
79 |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=17.5, value=12.5, label="Guidance Scale")
|
80 |
seed_input = gr.Textbox(value="255", label="Random Seed")
|
81 |
|
82 |
+
inputs = [image_mask_input, prompt_input, num_inference_steps_input, image_guidance_scale_input, guidance_scale_input, seed_input]
|
83 |
+
outputs = [gr.Image(label="Generated Image"), gr.Text(label="Editing Mode")]
|
|
|
|
|
84 |
|
|
|
85 |
article_html = """
|
86 |
<div style="text-align: center; max-width: 1000px; margin: 20px auto; font-family: Arial, sans-serif;">
|
87 |
<h2 style="font-weight: 900; font-size: 2.5rem; margin-bottom: 0.5rem;">
|
88 |
🖼️ UltraEdit for Fine-Grained Image Editing
|
89 |
</h2>
|
90 |
<div style="margin-bottom: 1rem;">
|
91 |
+
<h3 style="font-weight: 500; font-size: 1.25rem; margin: 0;"></h3>
|
|
|
92 |
<p style="font-weight: 400; font-size: 1rem; margin: 0.5rem 0;">
|
93 |
Haozhe Zhao<sup>1*</sup>, Xiaojian Ma<sup>2*</sup>, Liang Chen<sup>1</sup>, Shuzheng Si<sup>1</sup>, Rujie Wu<sup>1</sup>,
|
94 |
Kaikai An<sup>1</sup>, Peiyu Yu<sup>3</sup>, Minjia Zhang<sup>4</sup>, Qing Li<sup>2</sup>, Baobao Chang<sup>2</sup>
|
|
|
104 |
<a href="https://huggingface.co/datasets/BleachNick/UltraEdit_500k" style="display: flex; align-items: center; text-decoration: none; color: blue; font-weight: bold; gap: 0.5rem;">
|
105 |
<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" alt="Dataset_500k" style="height: 20px; vertical-align: middle;"> Dataset_500k
|
106 |
</a>
|
107 |
+
<a href="https://ultra-editing.github.io/" style="display: flex; align-items: center; text-decoration: none; color: blue; font-weight: bold; gap: 0.5rem;">
|
108 |
<span style="font-size: 20px; vertical-align: middle;">🔗</span> Page
|
109 |
</a>
|
110 |
<a href="https://huggingface.co/BleachNick/SD3_UltraEdit_w_mask" style="display: flex; align-items: center; text-decoration: none; color: blue; font-weight: bold; gap: 0.5rem;">
|
|
|
116 |
</div>
|
117 |
<div style="text-align: left; margin: 0 auto; font-size: 1rem; line-height: 1.5;">
|
118 |
<p>
|
119 |
+
<b>UltraEdit</b> is a dataset designed for fine-grained, instruction-based image editing. It contains over 4 million free-form image editing samples and more than 100,000 region-based image editing samples, automatically generated with real images as anchors.
|
120 |
</p>
|
121 |
<p>
|
122 |
+
This demo allows you to perform image editing using the <a href="https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers" style="color: blue; text-decoration: none;">Stable Diffusion 3</a> model trained with this extensive dataset. It supports both free-form (without mask) and region-based (with mask) image editing. Use the sliders to adjust the inference steps and guidance scales, and provide a seed for reproducibility. The image guidance scale of 1.5 and text guidance scale of 7.5 / 12.5 is a good start for free-form/region-based image editing.
|
123 |
</p>
|
124 |
+
<p>
|
125 |
+
<b>Usage Instructions:</b> You need to upload the images and prompts for editing. Use the pen tool to mark the areas you want to edit. If no region is marked, it will resort to free-form editing.
|
126 |
+
</p>
|
127 |
</div>
|
128 |
</div>
|
129 |
"""
|
130 |
+
html = '''
|
131 |
<div style="text-align: left; margin-top: 2rem; font-size: 0.85rem; color: gray;">
|
132 |
+
<b>Limitations:</b>
|
133 |
+
<ul>
|
134 |
+
<li>We have not conducted any NSFW checks;</li>
|
135 |
+
<li>Due to the bias of the generated models, the model performance is still weak when dealing with high-frequency information such as <b>human facial expressions or text in the images</b>;</li>
|
136 |
+
<li>We unified the free-form and region-based image editing by adding an extra channel of the mask image to the dataset. When doing free-form image editing, the network receives a blank mask.</li>
|
137 |
+
<li>The generation result is sensitive to the guidance scale. For text guidance, based on experience, free-form image editing will perform better with a relatively low guidance score (7.5 or lower), while region-based image editing will perform better with a higher guidance score.</li>
|
138 |
+
</ul>
|
139 |
</div>
|
140 |
'''
|
141 |
+
|
142 |
demo = gr.Interface(
|
143 |
fn=generate,
|
144 |
inputs=inputs,
|
145 |
outputs=outputs,
|
146 |
+
description=article_html,
|
147 |
+
article=html,
|
148 |
examples=mask_ex_list
|
149 |
)
|
150 |
|
151 |
+
demo.queue().launch()
|
|
gradio_cached_examples/18/Generated Image/39941882bacd2ca28afc/image.webp
ADDED
gradio_cached_examples/18/Generated Image/5f053b78177fa3272b0c/image.webp
ADDED
gradio_cached_examples/18/indices.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
3
|
2 |
+
4
|
gradio_cached_examples/18/log.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
Generated Image,flag,username,timestamp
|
2 |
+
"{""path"": ""gradio_cached_examples/18/Generated Image/5f053b78177fa3272b0c/image.webp"", ""url"": ""/file=/tmp/gradio/8043730bd61f29a1a30304ac15699d0064c2531e/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",,,2024-07-03 08:58:08.623689
|
3 |
+
"{""path"": ""gradio_cached_examples/18/Generated Image/39941882bacd2ca28afc/image.webp"", ""url"": ""/file=/tmp/gradio/8270e583b13f74410600120bfecac4875318da12/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",,,2024-07-03 09:00:30.281946
|
gradio_cached_examples/20/Generated Image/1c15f96417dfc872dde9/image.webp
ADDED
gradio_cached_examples/20/Generated Image/7003c566c19b7f282686/image.webp
ADDED
gradio_cached_examples/20/Generated Image/cb25215afd568f92f343/image.webp
ADDED
gradio_cached_examples/20/Generated Image/ffb6d87910f6ca2b2f72/image.webp
ADDED
gradio_cached_examples/20/indices.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
4
|
2 |
+
2
|
3 |
+
0
|
4 |
+
3
|
gradio_cached_examples/20/log.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Generated Image,Editing Mode,flag,username,timestamp
|
2 |
+
"{""path"": ""gradio_cached_examples/20/Generated Image/1c15f96417dfc872dde9/image.webp"", ""url"": ""/file=/tmp/gradio/01a2766c512a956cf5245499b443d51f042249da/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",Editing Mode: Free-form,,,2024-07-03 09:14:45.183288
|
3 |
+
"{""path"": ""gradio_cached_examples/20/Generated Image/ffb6d87910f6ca2b2f72/image.webp"", ""url"": ""/file=/tmp/gradio/ddb27dadd6deb2e3e9203dc5a4eb32070bf51da9/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",Editing Mode: Region-based,,,2024-07-03 09:15:49.425530
|
4 |
+
"{""path"": ""gradio_cached_examples/20/Generated Image/cb25215afd568f92f343/image.webp"", ""url"": ""/file=/tmp/gradio/17eb2aa4890218abb35c8edb6529dbd890474973/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",Editing Mode: Region-based,,,2024-07-03 09:16:23.823989
|
5 |
+
"{""path"": ""gradio_cached_examples/20/Generated Image/7003c566c19b7f282686/image.webp"", ""url"": ""/file=/tmp/gradio/f914d44ebf581bc784c804cafe98c6eaa6bd1139/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",Editing Mode: Region-based,,,2024-07-03 09:21:13.664147
|