Spaces:
Sleeping
Sleeping
jed-tiotuico
commited on
Commit
•
ffa493c
1
Parent(s):
5628e55
first commit
Browse files- app.py +332 -0
- pre-requirements.txt +2 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
from google.protobuf import message
|
3 |
+
import torch
|
4 |
+
import time
|
5 |
+
import threading
|
6 |
+
import streamlit as st
|
7 |
+
import random
|
8 |
+
from typing import Iterable
|
9 |
+
# from unsloth import FastLanguageModel
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, PreTrainedTokenizerFast
|
11 |
+
from datetime import datetime
|
12 |
+
from threading import Thread
|
13 |
+
|
14 |
+
# fine_tuned_model_name = "jed-tiotuico/twitter-llama"
|
15 |
+
# sota_model_name = "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"
|
16 |
+
|
17 |
+
fine_tuned_model_name = "MBZUAI/LaMini-GPT-124M"
|
18 |
+
sota_model_name = "MBZUAI/LaMini-GPT-124M"
|
19 |
+
alpaca_input_text_format = "### Instruction:\n{}\n\n### Response:\n"
|
20 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
21 |
+
# if device is cpu try mps?
|
22 |
+
if device == "cpu":
|
23 |
+
# check if mps is available
|
24 |
+
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
25 |
+
|
26 |
+
def get_model_tokenizer(sota_model_name):
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
28 |
+
sota_model_name,
|
29 |
+
cache_dir="/Users/jedtiotuico/.hf_cache",
|
30 |
+
trust_remote_code=True
|
31 |
+
)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
sota_model_name,
|
34 |
+
cache_dir="/Users/jedtiotuico/.hf_cache",
|
35 |
+
trust_remote_code=True
|
36 |
+
).to(device)
|
37 |
+
|
38 |
+
return model, tokenizer
|
39 |
+
|
40 |
+
def write_user_chat_message(user_chat, customer_msg):
|
41 |
+
if customer_msg:
|
42 |
+
if user_chat == None:
|
43 |
+
user_chat = st.chat_message("user")
|
44 |
+
|
45 |
+
user_chat.write(customer_msg)
|
46 |
+
|
47 |
+
def write_stream_user_chat_message(user_chat, model, token, prompt):
|
48 |
+
if prompt:
|
49 |
+
if user_chat == None:
|
50 |
+
user_chat = st.chat_message("user")
|
51 |
+
|
52 |
+
new_customer_msg = user_chat.write_stream(
|
53 |
+
stream_generation(
|
54 |
+
prompt,
|
55 |
+
show_prompt=False,
|
56 |
+
tokenizer=tokenizer,
|
57 |
+
model=model,
|
58 |
+
)
|
59 |
+
)
|
60 |
+
|
61 |
+
return new_customer_msg
|
62 |
+
|
63 |
+
def get_mistral_model_tokenizer(sota_model_name):
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
65 |
+
sota_model_name,
|
66 |
+
cache_dir="/Users/jedtiotuico/.hf_cache",
|
67 |
+
trust_remote_code=True
|
68 |
+
)
|
69 |
+
model = AutoModelForCausalLM.from_pretrained(
|
70 |
+
sota_model_name,
|
71 |
+
cache_dir="/Users/jedtiotuico/.hf_cache",
|
72 |
+
trust_remote_code=True
|
73 |
+
).to(device)
|
74 |
+
|
75 |
+
return model, tokenizer
|
76 |
+
|
77 |
+
class DeckPicker:
|
78 |
+
def __init__(self, items):
|
79 |
+
self.items = items[:] # Make a copy of the items to shuffle
|
80 |
+
self.original_items = items[:] # Keep the original order
|
81 |
+
random.shuffle(self.items) # Shuffle the items
|
82 |
+
self.index = -1 # Initialize the index
|
83 |
+
|
84 |
+
def pick(self):
|
85 |
+
"""Pick the next item from the deck. If all items have been picked, reshuffle."""
|
86 |
+
self.index += 1
|
87 |
+
if self.index >= len(self.items):
|
88 |
+
self.index = 0
|
89 |
+
random.shuffle(self.items) # Reshuffle if at the end
|
90 |
+
return self.items[self.index]
|
91 |
+
|
92 |
+
def get_state(self):
|
93 |
+
"""Return the current state of the deck and the last picked index."""
|
94 |
+
return self.items, self.index
|
95 |
+
|
96 |
+
# Example of usage
|
97 |
+
nouns = [
|
98 |
+
"service", "issue", "account", "support", "problem", "help", "team",
|
99 |
+
"request", "response", "email", "ticket", "update", "error", "system",
|
100 |
+
"connection", "downtime", "billing", "charge", "refund", "password",
|
101 |
+
"outage", "agent", "feature", "access", "status", "interface", "network",
|
102 |
+
"subscription", "upgrade", "notification", "data", "server", "log", "message",
|
103 |
+
"renewal", "setup", "security", "feedback", "confirmation", "printer"
|
104 |
+
]
|
105 |
+
|
106 |
+
verbs = [
|
107 |
+
"have", "print", "need", "help", "update", "resolve", "access", "contact",
|
108 |
+
"receive", "reset", "support", "experience", "report", "request", "process",
|
109 |
+
"check", "confirm", "explain", "manage", "handle", "disconnect", "renew",
|
110 |
+
"change", "fix", "cancel", "complete", "notify", "respond", "fail", "restore",
|
111 |
+
"review", "escalate", "submit", "configure", "troubleshoot", "log", "operate",
|
112 |
+
"suspend", "pay", "adjust"
|
113 |
+
]
|
114 |
+
|
115 |
+
adjectives = [
|
116 |
+
"quick", "immediate", "urgent", "unable", "detailed", "frequent", "technical",
|
117 |
+
"possible", "slow", "helpful", "unresponsive", "secure", "successful", "necessary",
|
118 |
+
"available", "scheduled", "regular", "interrupted", "automatic", "manual", "last",
|
119 |
+
"online", "offline", "new", "current", "prior", "due", "related", "temporary",
|
120 |
+
"permanent", "next", "previous", "complicated", "easy", "difficult", "major",
|
121 |
+
"minor", "alternative", "additional", "expired"
|
122 |
+
]
|
123 |
+
|
124 |
+
def create_few_shots(noun_picker, verb_picker, adjective_picker):
|
125 |
+
noun = noun_picker.pick()
|
126 |
+
verb = verb_picker.pick()
|
127 |
+
adjective = adjective_picker.pick()
|
128 |
+
|
129 |
+
context = f"""
|
130 |
+
Write a short realistic customer support tweet message by a customer for another company.
|
131 |
+
Avoid adding hashtags or mentions in the message.
|
132 |
+
Ensure that the sentiment is negative.
|
133 |
+
Ensure that the word count is around 15 to 25 words.
|
134 |
+
Ensure the message contains the noun: {noun}, verb: {verb}, and adjective: {adjective}.
|
135 |
+
|
136 |
+
Example of return messages 5/5:
|
137 |
+
|
138 |
+
1/5: your website is straight up garbage. how do you sell high end technology but you cant get a website right?
|
139 |
+
2/5: my phone is all static during calls and when i plug in headphones any audio still comes thru the speaks wtf
|
140 |
+
3/5: hi, i'm having trouble logging into my groceries account it keeps refreshing back to the log in page, any ideas?
|
141 |
+
4/5: please check you dms asap if you're really about customer service. 2 weeks since my accident and nothing.
|
142 |
+
5/5: I'm extremely disappointed with your service. You charged me for a temporary solution, and there's no adjustment in sight.
|
143 |
+
|
144 |
+
Now it's your turn, ensure to only generate one message
|
145 |
+
1/1:
|
146 |
+
"""
|
147 |
+
return context
|
148 |
+
|
149 |
+
st.header("ReplyCaddy")
|
150 |
+
st.write("AI-powered customer support assistant. Reduces anxiety when responding to customer support on social media.")
|
151 |
+
# image https://github.com/unslothai/unsloth/blob/main/images/made%20with%20unsloth.png?raw=true
|
152 |
+
# st.write("Made with [Unsloth](https://github.com/unslothai/unsloth/blob/main/images/made%20with%20unsloth.png?raw=true")
|
153 |
+
|
154 |
+
def stream_generation(
|
155 |
+
prompt: str,
|
156 |
+
tokenizer: PreTrainedTokenizerFast,
|
157 |
+
model: AutoModelForCausalLM,
|
158 |
+
max_new_tokens: int = 2048,
|
159 |
+
temperature: float = 0.7,
|
160 |
+
top_p: float = 0.9,
|
161 |
+
top_k: int = 100,
|
162 |
+
repetition_penalty: float = 1.1,
|
163 |
+
penalty_alpha: float = 0.25,
|
164 |
+
no_repeat_ngram_size: int = 3,
|
165 |
+
show_prompt: bool = False,
|
166 |
+
) -> Iterable[str]:
|
167 |
+
"""
|
168 |
+
Stream the generation of a prompt.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
prompt (str): the prompt
|
172 |
+
max_new_tokens (int, optional): the maximum number of tokens to generate. Defaults to 32.
|
173 |
+
temperature (float, optional): the temperature of the generation. Defaults to 0.7.
|
174 |
+
top_p (float, optional): the top-p value of the generation. Defaults to 0.9.
|
175 |
+
top_k (int, optional): the top-k value of the generation. Defaults to 100.
|
176 |
+
repetition_penalty (float, optional): the repetition penalty of the generation. Defaults to 1.1.
|
177 |
+
penalty_alpha (float, optional): the penalty alpha of the generation. Defaults to 0.25.
|
178 |
+
no_repeat_ngram_size (int, optional): the no repeat ngram size of the generation. Defaults to 3.
|
179 |
+
show_prompt (bool, optional): whether to show the prompt or not. Defaults to False.
|
180 |
+
tokenizer (PreTrainedTokenizerFast): the tokenizer
|
181 |
+
model (AutoModelForCausalLM): the model
|
182 |
+
|
183 |
+
Yields:
|
184 |
+
str: the generated text
|
185 |
+
"""
|
186 |
+
# init the streaming object with tokenizer
|
187 |
+
# skip_prompt = not show_prompt, skip_special_tokens = True
|
188 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=not show_prompt, skip_special_tokens=True) # type: ignore
|
189 |
+
|
190 |
+
# setup kwargs for generation
|
191 |
+
generation_kwargs = dict(
|
192 |
+
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(device),
|
193 |
+
streamer=streamer,
|
194 |
+
do_sample=True,
|
195 |
+
temperature=temperature,
|
196 |
+
top_p=top_p,
|
197 |
+
top_k=top_k,
|
198 |
+
repetition_penalty=repetition_penalty,
|
199 |
+
penalty_alpha=penalty_alpha,
|
200 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
201 |
+
max_new_tokens=max_new_tokens,
|
202 |
+
)
|
203 |
+
|
204 |
+
# start the generation in a separate thread
|
205 |
+
generation_thread = threading.Thread(
|
206 |
+
target=model.generate, kwargs=generation_kwargs # type: ignore
|
207 |
+
)
|
208 |
+
generation_thread.start()
|
209 |
+
|
210 |
+
blacklisted_tokens = ["<|url|>"]
|
211 |
+
for new_text in streamer:
|
212 |
+
# filter out blacklisted tokens
|
213 |
+
if any(token in new_text for token in blacklisted_tokens):
|
214 |
+
continue
|
215 |
+
|
216 |
+
yield new_text
|
217 |
+
|
218 |
+
# wait for the generation to finish
|
219 |
+
generation_thread.join()
|
220 |
+
|
221 |
+
twitter_llama_model = None
|
222 |
+
twitter_llama_tokenizer = None
|
223 |
+
streamer = None
|
224 |
+
|
225 |
+
# define state and the chat messages
|
226 |
+
def init_session_states(assistant_chat, user_chat):
|
227 |
+
if "user_msg_as_prompt" not in st.session_state:
|
228 |
+
st.session_state["user_msg_as_prompt"] = ""
|
229 |
+
|
230 |
+
user_chat = None
|
231 |
+
if "user_msg_as_prompt" in st.session_state:
|
232 |
+
user_chat = st.chat_message("user")
|
233 |
+
|
234 |
+
assistant_chat = st.chat_message("assistant")
|
235 |
+
if "greet" not in st.session_state:
|
236 |
+
st.session_state["greet"] = False
|
237 |
+
greeting_text = "Hello! I'm here to help. Copy and paste your customer's message, or generate using AI."
|
238 |
+
assistant_chat.write(greeting_text)
|
239 |
+
|
240 |
+
init_session_states(assistant_chat, user_chat)
|
241 |
+
|
242 |
+
# Generate Response Tweet
|
243 |
+
if user_chat:
|
244 |
+
if st.button("Generate Polite and Friendly Response"):
|
245 |
+
if "user_msg_as_prompt" in st.session_state:
|
246 |
+
customer_msg = st.session_state["user_msg_as_prompt"]
|
247 |
+
if customer_msg:
|
248 |
+
write_user_chat_message(user_chat, customer_msg)
|
249 |
+
|
250 |
+
model, tokenizer = get_model_tokenizer(sota_model_name)
|
251 |
+
|
252 |
+
input_text = alpaca_input_text_format.format(customer_msg)
|
253 |
+
st.markdown(f"""```\n{input_text}```""", unsafe_allow_html=True)
|
254 |
+
response_tweet = assistant_chat.write_stream(
|
255 |
+
stream_generation(
|
256 |
+
input_text,
|
257 |
+
show_prompt=False,
|
258 |
+
tokenizer=tokenizer,
|
259 |
+
model=model,
|
260 |
+
)
|
261 |
+
)
|
262 |
+
else:
|
263 |
+
st.error("Please enter a customer message, or generate one for the ai to respond")
|
264 |
+
|
265 |
+
# main ui prompt
|
266 |
+
# - text box
|
267 |
+
# - submit
|
268 |
+
with st.form(key="my_form"):
|
269 |
+
prompt = st.text_area("Customer Message")
|
270 |
+
write_user_chat_message(user_chat, prompt)
|
271 |
+
if st.form_submit_button("Submit"):
|
272 |
+
assistant_chat.write("Hi, Human.")
|
273 |
+
|
274 |
+
# below ui prompt
|
275 |
+
# - examples
|
276 |
+
# st.markdown("<b>Example:</b>", unsafe_allow_html=True)
|
277 |
+
if st.button("your website is straight up garbage. how do you sell high end technology but you cant get a website right?"):
|
278 |
+
customer_msg = "your website is straight up garbage. how do you sell high end technology but you cant get a website right?"
|
279 |
+
st.session_state["user_msg_as_prompt"] = customer_msg
|
280 |
+
write_user_chat_message(user_chat, customer_msg)
|
281 |
+
model, tokenizer = get_model_tokenizer(sota_model_name)
|
282 |
+
input_text = alpaca_input_text_format.format(customer_msg)
|
283 |
+
st.write(f"```\n{input_text}```")
|
284 |
+
assistant_chat.write_stream(
|
285 |
+
stream_generation(
|
286 |
+
input_text,
|
287 |
+
show_prompt=False,
|
288 |
+
tokenizer=tokenizer,
|
289 |
+
model=model,
|
290 |
+
)
|
291 |
+
)
|
292 |
+
|
293 |
+
# - Generate Customer Tweet
|
294 |
+
if st.button("Generate Customer Message using Few Shots"):
|
295 |
+
max_seq_length = 2048
|
296 |
+
dtype = torch.float16
|
297 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
298 |
+
|
299 |
+
model, tokenizer = get_mistral_model_tokenizer(sota_model_name)
|
300 |
+
|
301 |
+
noun_picker = DeckPicker(nouns)
|
302 |
+
verb_picker = DeckPicker(verbs)
|
303 |
+
adjective_picker = DeckPicker(adjectives)
|
304 |
+
few_shots = create_few_shots(noun_picker, verb_picker, adjective_picker)
|
305 |
+
few_shot_prompt = f"<s>[INST]{few_shots}[/INST]\n"
|
306 |
+
st.markdown("Prompt:")
|
307 |
+
st.markdown(f"""```\n{few_shot_prompt}```""", unsafe_allow_html=True)
|
308 |
+
|
309 |
+
new_customer_msg = write_stream_user_chat_message(user_chat, model, tokenizer, few_shot_prompt)
|
310 |
+
st.session_state["user_msg_as_prompt"] = new_customer_msg
|
311 |
+
|
312 |
+
|
313 |
+
st.markdown("------------")
|
314 |
+
st.markdown("<p>Thanks to:</p>", unsafe_allow_html=True)
|
315 |
+
st.markdown("""Unsloth https://github.com/unslothai check out the [wiki](https://github.com/unslothai/unsloth/wiki)""")
|
316 |
+
st.markdown("""Georgi Gerganov's ggml https://github.com/ggerganov/ggml""")
|
317 |
+
st.markdown("""Meta's Llama https://github.com/meta-llama""")
|
318 |
+
st.markdown("""Mistral AI - https://github.com/mistralai""")
|
319 |
+
st.markdown("""Zhang Peiyuan's TinyLlama https://github.com/jzhang38/TinyLlama""")
|
320 |
+
st.markdown("""Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois,
|
321 |
+
Xuechen Li, Carlos Guestrin, Percy Liang, Tatsunori B. Hashimoto
|
322 |
+
- [Alpaca: A Strong, Replicable Instruction-Following Model](https://crfm.stanford.edu/2023/03/13/alpaca.html)""")
|
323 |
+
|
324 |
+
if device == "cuda":
|
325 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
326 |
+
max_memory = gpu_stats.total_memory / 1024 ** 3
|
327 |
+
start_gpu_memory = torch.cuda.memory_reserved(0) / 1024 ** 3
|
328 |
+
st.write(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
329 |
+
st.write(f"{start_gpu_memory} GB of memory reserved.")
|
330 |
+
|
331 |
+
st.write("Packages:")
|
332 |
+
st.write(f"pytorch: {torch.__version__}")
|
pre-requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pip >= 24.0
|
2 |
+
wheel
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.2.1
|
2 |
+
peft==0.10.0
|
3 |
+
transformers
|
4 |
+
unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git
|
5 |
+
packaging
|
6 |
+
ninja
|
7 |
+
einops
|
8 |
+
xformers<0.0.26
|
9 |
+
trl
|
10 |
+
accelerate
|
11 |
+
bitsandbytes
|
12 |
+
jsonlines
|
13 |
+
regex
|
14 |
+
streamlit
|