jeevan
refactoring
936a3c3
import os
from typing import List
import uuid
import chainlit as cl
from chainlit.types import AskFileResponse
from langchain.memory import ConversationBufferMemory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_community.document_loaders import PyMuPDFLoader, TextLoader
from langchain.prompts import MessagesPlaceholder
from langchain.prompts import ChatPromptTemplate
from langchain.chains.history_aware_retriever import create_history_aware_retriever
from langchain.chains.retrieval import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_experimental.text_splitter import SemanticChunker
from langchain_qdrant import QdrantVectorStore
from langchain_core.documents import Document
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_openai import ChatOpenAI
from langchain_core.runnables.history import RunnableWithMessageHistory
# from chainlit.input_widget import Select, Switch, Slider
from dotenv import load_dotenv
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
load_dotenv()
BOR_FILE_PATH = "https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf"
NIST_FILE_PATH = "https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf"
SMALL_DOC = "https://arxiv.org/pdf/1908.10084" # 11 pages Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
documents_to_preload = [
BOR_FILE_PATH,
NIST_FILE_PATH
# SMALL_DOC
]
collection_name = "ai-safety"
welcome_message = """
Welcome to the chatbot to clarify all your AI Safety related queries.:
Now preloading below documents:
1. Blueprint for an AI Bill of Rights
2. NIST AI Standards
Please wait for a moment to load the documents.
"""
chat_model_name = "gpt-4o"
embedding_model_name = "Snowflake/snowflake-arctic-embed-l"
chat_model = ChatOpenAI(model=chat_model_name, temperature=0)
async def connect_to_qdrant():
embedding_model = HuggingFaceEmbeddings(model_name=embedding_model_name)
qdrant_url = os.environ["QDRANT_URL"]
qdrant_api_key = os.environ["QDRANT_API_KEY"]
collection_name = os.environ["COLLECTION_NAME"]
qdrant_client = QdrantClient(url=qdrant_url,api_key=qdrant_api_key)
vector_store = QdrantVectorStore(
client=qdrant_client,
collection_name=collection_name,
embedding=embedding_model,
)
return vector_store.as_retriever(search_type="similarity_score_threshold",search_kwargs={'k':10,'score_threshold': 0.8})
async def get_contextual_compressed_retriever(retriver):
base_retriever = retriver
compressor_llm = ChatOpenAI(temperature=0, model_name="gpt-4o", max_tokens=4000)
compressor = LLMChainExtractor.from_llm(compressor_llm)
#Combine the retriever with the compressor
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=base_retriever
)
return compression_retriever
def initialize_vectorstore(
collection_name: str,
embedding_model,
dimension,
distance_metric: Distance = Distance.COSINE,
):
client = QdrantClient(":memory:")
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=dimension, distance=distance_metric),
)
vector_store = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=embedding_model,
)
return vector_store
def get_text_splitter(strategy, embedding_model):
if strategy == "semantic":
return SemanticChunker(
embedding_model,
breakpoint_threshold_type="percentile",
breakpoint_threshold_amount=90,
)
def process_file(file: AskFileResponse, text_splitter):
if file.type == "text/plain":
Loader = TextLoader
elif file.type == "application/pdf":
Loader = PyMuPDFLoader
loader = Loader(file.path)
documents = loader.load()
title = documents[0].metadata.get("title")
docs = text_splitter.split_documents(documents)
for i, doc in enumerate(docs):
doc.metadata["source"] = f"source_{i}"
doc.metadata["title"] = title
return docs
def populate_vectorstore(vector_store, docs: List[Document]):
vector_store.add_documents(docs)
return vector_store
def create_history_aware_retriever_self(chat_model, retriever):
contextualize_q_system_prompt = (
"Given a chat history and the latest user question which might reference context in the chat history, "
"formulate a standalone question which can be understood without the chat history. Do NOT answer the question, "
"just reformulate it if needed and otherwise return it as is."
)
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
return create_history_aware_retriever(chat_model, retriever, contextualize_q_prompt)
def create_qa_chain(chat_model):
qa_system_prompt = (
"You are an helpful assistant named 'Shield' and your task is to answer any questions related to AI Safety for the given context."
"Use the following pieces of retrieved context to answer the question."
# "If any questions asked outside AI Safety context, just say that you are a specialist in AI Safety and can't answer that."
# f"When introducing you, just say that you are an AI assistant powered by embedding model {embedding_model_name} and chat model {chat_model_name} and your knowledge is limited to 'Blueprint for an AI Bill of Rights' and 'NIST AI Standards' documents."
"If you don't know the answer, just say that you don't know.\n\n"
"{context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
return create_stuff_documents_chain(chat_model, qa_prompt)
def create_rag_chain(chat_model, retriever):
history_aware_retriever = create_history_aware_retriever_self(chat_model, retriever)
question_answer_chain = create_qa_chain(chat_model)
return create_retrieval_chain(history_aware_retriever, question_answer_chain)
def create_session_id():
session_id = str(uuid.uuid4())
return session_id
@cl.on_chat_start
async def start():
msg = cl.Message(content=welcome_message)
await msg.send()
# Create a session id
session_id = create_session_id()
cl.user_session.set("session_id", session_id)
retriever = await connect_to_qdrant()
contextual_compressed_retriever = await get_contextual_compressed_retriever(retriever)
rag_chain = create_rag_chain(chat_model, contextual_compressed_retriever)
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer",
)
# Let the user know that the system is ready
msg.content = msg.content + "\nReady to answer your questions!"
await msg.update()
cl.user_session.set("conversational_rag_chain", conversational_rag_chain)
@cl.on_message
async def main(message: cl.Message):
session_id = cl.user_session.get("session_id")
conversational_rag_chain = cl.user_session.get("conversational_rag_chain")
response = await conversational_rag_chain.ainvoke(
{"input": message.content},
config={"configurable": {"session_id": session_id},
"callbacks":[cl.AsyncLangchainCallbackHandler()]},
)
answer = response["answer"]
source_documents = response["context"]
text_elements = []
unique_pages = set()
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx+1}"
page_number = source_doc.metadata['page']
#page_number = source_doc.metadata.get('page', "NA") # NA or any default value
page = f"Page {page_number}"
text_element_content = source_doc.page_content
text_element_content = text_element_content if text_element_content != "" else "No Content"
#text_elements.append(cl.Text(content=text_element_content, name=source_name))
if page not in unique_pages:
unique_pages.add(page)
text_elements.append(cl.Text(content=text_element_content, name=page))
#text_elements.append(cl.Text(content=text_element_content, name=page))
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\n\n Sources:{', '.join(source_names)}"
else:
answer += "\n\n No sources found"
await cl.Message(content=answer, elements=text_elements).send()
if __name__ == "__main__":
from chainlit.cli import run_chainlit
run_chainlit(__file__)