Spaces:
Runtime error
Runtime error
import os | |
import time | |
import csv | |
import datetime | |
import gradio | |
import schedule | |
from gradio import utils | |
import huggingface_hub | |
from pathlib import Path | |
from src.models.bert import BERTClassifier | |
from src.utils.utilities import Utility | |
model = BERTClassifier(model_name='jeevavijay10/nlp-goemotions-bert') | |
classes = Utility().read_emotion_list() | |
hf_token = os.getenv("HF_TOKEN") | |
dataset_dir = "logs" | |
headers = ["input", "output", "timestamp", "elapsed"] | |
repo = huggingface_hub.Repository( | |
local_dir=dataset_dir, | |
clone_from="https://huggingface.co/datasets/jeevavijay10/senti-pred-gradio", | |
token=hf_token, | |
) | |
repo.git_pull(lfs=True) | |
def log_record(vals): | |
log_file = Path(dataset_dir) / "data.csv" | |
is_new = not Path(log_file).exists() | |
with open(log_file, "a", newline="", encoding="utf-8") as csvfile: | |
writer = csv.writer(csvfile) | |
if is_new: | |
writer.writerow(utils.sanitize_list_for_csv(headers)) | |
writer.writerow(utils.sanitize_list_for_csv(vals)) | |
schedule.run_pending() | |
print(f"Last Sync: {job.last_run}") | |
def predict(sentence): | |
timestamp = datetime.datetime.now().isoformat() | |
start_time = time.time() | |
predictions = model.evaluate([sentence]) | |
elapsed_time = time.time() - start_time | |
output = classes[predictions[0]] | |
print(f"Sentence: {sentence} \nPrediction: {predictions[0]} - {output}") | |
log_record([sentence, output, timestamp, str(elapsed_time)]) | |
return output | |
def sync_logs(): | |
print(f"Repo Clean: {repo.is_repo_clean()}") | |
if not repo.is_repo_clean(): | |
repo.git_add() | |
repo.git_commit() | |
repo.git_pull(lfs=True) | |
result = repo.git_push() | |
# result = repo.push_to_hub() | |
print(result) | |
job = schedule.every(5).minutes.do(sync_logs) | |
print("Scheduler engaged") | |
gradio.Interface( | |
fn=predict, | |
inputs="text", | |
outputs="text", | |
allow_flagging='never' | |
).launch() | |