|
import gradio as gr |
|
from ultralytics import YOLOv10 |
|
import supervision as sv |
|
import spaces |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
def download_models(model_id): |
|
hf_hub_download("kadirnar/Yolov10", filename=f"{model_id}", local_dir=f"./") |
|
return f"./{model_id}" |
|
|
|
box_annotator = sv.BoxAnnotator() |
|
category_dict = { |
|
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', |
|
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', |
|
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', |
|
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', |
|
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', |
|
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', |
|
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', |
|
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', |
|
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', |
|
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', |
|
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', |
|
56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', |
|
61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', |
|
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', |
|
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', |
|
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush' |
|
} |
|
|
|
|
|
@spaces.GPU(duration=200) |
|
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold): |
|
model_path = download_models(model_id) |
|
model = YOLOv10(model_path) |
|
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0] |
|
detections = sv.Detections.from_ultralytics(results) |
|
|
|
labels = [ |
|
f"{category_dict[class_id]} {confidence:.2f}" |
|
for class_id, confidence in zip(detections.class_id, detections.confidence) |
|
] |
|
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) |
|
|
|
return annotated_image |
|
|
|
def app(): |
|
with gr.Blocks(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(type="numpy", label="Image") |
|
|
|
model_id = gr.Dropdown( |
|
label="Model", |
|
choices=[ |
|
"yolov10n.pt", |
|
"yolov10s.pt", |
|
"yolov10m.pt", |
|
"yolov10b.pt", |
|
"yolov10l.pt", |
|
"yolov10x.pt", |
|
], |
|
value="yolov10m.pt", |
|
) |
|
image_size = gr.Slider( |
|
label="Image Size", |
|
minimum=320, |
|
maximum=1280, |
|
step=32, |
|
value=640, |
|
) |
|
conf_threshold = gr.Slider( |
|
label="Confidence Threshold", |
|
minimum=0.1, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.25, |
|
) |
|
iou_threshold = gr.Slider( |
|
label="IoU Threshold", |
|
minimum=0.1, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.45, |
|
) |
|
yolov10_infer = gr.Button(value="Detect Objects") |
|
|
|
with gr.Column(): |
|
output_image = gr.Image(type="numpy", label="Annotated Image") |
|
|
|
yolov10_infer.click( |
|
fn=yolov10_inference, |
|
inputs=[ |
|
image, |
|
model_id, |
|
image_size, |
|
conf_threshold, |
|
iou_threshold, |
|
], |
|
outputs=[output_image], |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"dog.jpeg", |
|
"yolov10x.pt", |
|
640, |
|
0.25, |
|
0.45, |
|
], |
|
[ |
|
"huggingface.jpg", |
|
"yolov10m.pt", |
|
640, |
|
0.25, |
|
0.45, |
|
], |
|
[ |
|
"zidane.jpg", |
|
"yolov10b.pt", |
|
640, |
|
0.25, |
|
0.45, |
|
], |
|
], |
|
fn=yolov10_inference, |
|
inputs=[ |
|
image, |
|
model_id, |
|
image_size, |
|
conf_threshold, |
|
iou_threshold, |
|
], |
|
outputs=[output_image], |
|
cache_examples=True, |
|
) |
|
|
|
gradio_app = gr.Blocks() |
|
with gradio_app: |
|
gr.HTML( |
|
""" |
|
<h1 style='text-align: center'> |
|
YOLOv10 |
|
</h1> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
app() |
|
|
|
gradio_app.launch(debug=True) |