Spaces:
Running
Running
File size: 1,926 Bytes
4f01cda becb771 4f01cda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title>
<meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser">
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
<style>
html, body {
margin: 0;
padding: 0;
height: 100%;
}
</style>
</head>
<body>
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
controlnet = ControlNetModel.from_pretrained("XLabs-AI/flux-ip-adapter")
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
"fill-in-base-model", controlnet=controlnet
)
<gradio-lite>
<gradio-file name="app.py" entrypoint>
import gradio as gr
from filters import as_gray
def process(input_image):
output_image = as_gray(input_image)
return output_image
demo = gr.Interface(
process,
"image",
"image",
examples=["lion.jpg", "logo.png"],
)
demo.launch()
</gradio-file>
<gradio-file name="filters.py">
from skimage.color import rgb2gray
def as_gray(image):
return rgb2gray(image)
</gradio-file>
<gradio-file name="lion.jpg" url="https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/test_data/lion.jpg" />
<gradio-file name="logo.png" url="https://raw.githubusercontent.com/gradio-app/gradio/main/guides/assets/logo.png" />
<gradio-requirements>
# Same syntax as requirements.txt
scikit-image
</gradio-requirements>
</gradio-lite>
</body>
</html> |