from fastai.vision.all import * import gradio as gr def is_cat(x): return 'cat' if (x.name)[0].isupper() else 'dog' learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} image = gr.Image() label = gr.Label() examples = ['yorkshire_terrier_171.jpg','Abyssinian_17.jpg'] intf = gr.Interface(fn=predict, inputs=image, outputs=label, examples=examples) intf.launch(share=True)