Spaces:
Runtime error
Runtime error
from PIL import Image | |
import gradio as gr | |
from transformers import ViTFeatureExtractor, ViTForImageClassification | |
import torch | |
# Init model, transforms | |
model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier') | |
transforms = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier') | |
def predict(im): | |
labels = {0:"0-2", 1: "3-9" , 2: "10-19", 3: "20-29", 4: "30-39", 5: "40-49", 6: "50-59", 7:"60-69",8:"more than 70"} | |
# Transform our image and pass it through the model | |
inputs = transforms(im, return_tensors='pt') | |
output = model(**inputs) | |
# Predicted Class probabilities | |
proba = output.logits.softmax(1) | |
# Predicted Classes | |
preds = proba.argmax(1) | |
values, indices = torch.topk(proba, k=5) | |
return {labels[i.item()]: v.item() for i, v in zip(indices.numpy()[0], values.detach().numpy()[0])} | |
inputs = [ | |
gr.inputs.Image(type="pil", label="Input Image") | |
] | |
title = "ViT-Age-Classification" | |
description = "ViT-Age-Classification is used to categorize an individual's age using images" | |
article = " <a href='https://huggingface.co/nateraw/vit-age-classifier'>ViT Age Classification Model Repo on Hugging Face Model Hub</a>" | |
examples = ["stock_baby.webp","stock_teen.webp","stock_guy.jpg","stock_old_woman.jpg"] | |
gr.Interface( | |
predict, | |
inputs, | |
outputs = 'label', | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
theme="huggingface", | |
).launch(debug=True, enable_queue=True) |