File size: 1,014 Bytes
2efbf0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
from fastai.vision.all import *
import skimage

learn = load_learner('export.pkl')
labels = learn.dls.vocab


def predict(img):
    img = PILImage.create(img)
    pred, pred_idx, probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}


title = "Pet Breed Classifier"
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio " \
              "and HuggingFace Spaces. "
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' " \
          "target='_blank'>Blog post</a></p> "
examples = ['siamese.jpg']
interpretation = 'default'
enable_queue = True

gr.Interface(
    fn=predict,
    inputs=gr.inputs.Image(shape=(512, 512)),
    outputs=gr.outputs.Label(num_top_classes=3),
    title=title,
    description=description,
    article=article,
    examples=examples,
    interpretation=interpretation,
    enable_queue=enable_queue
).launch()