Spaces:
Build error
Build error
File size: 20,408 Bytes
b369bda b240372 b369bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import numpy as np
from torch import optim
import os
import math
import cv2
import albumentations as A
# tensorboard is needed for run_train_step() which is commented out here
# from torch.utils.tensorboard import SummaryWriter
activation_fn = nn.ELU()
MAX_DEPTH = 81
DEPTH_OFFSET = 0.1 # This is used for ensuring depth prediction gets into positive range
USE_APEX = False # Enable if you have GPU with Tensor Cores, otherwise doesnt really bring any benefits.
APEX_OPT_LEVEL = "O2"
BATCH_NORM_MOMENTUM = 0.005
ENABLE_BIAS = True
device = torch.device("cpu")
if torch.cuda.is_available() :
device = torch.device("cuda")
print(f'--- BTS will use device: {device}')
if USE_APEX:
import apex
class UpscaleLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super(UpscaleLayer, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 3, padding=1, bias=ENABLE_BIAS)
self.bn = nn.BatchNorm2d(out_channels, momentum=BATCH_NORM_MOMENTUM)
def forward(self, input):
input = nn.functional.interpolate(input, scale_factor=2, mode="nearest")
input = activation_fn(self.conv(input))
input = self.bn(input)
return input
class UpscaleBlock(nn.Module):
def __init__(self, in_channels, skip_channels, out_channels):
super(UpscaleBlock, self).__init__()
self.uplayer = UpscaleLayer(in_channels, out_channels)
self.conv = nn.Conv2d(out_channels+skip_channels, out_channels, 3, padding=1, bias=ENABLE_BIAS)
self.bn2 = nn.BatchNorm2d(out_channels, BATCH_NORM_MOMENTUM)
def forward(self, input_j):
input, skip = input_j
input = self.uplayer(input)
cat = torch.cat((input, skip), 1)
input = activation_fn(self.conv(cat))
input = self.bn2(input)
return input, cat
class UpscaleNetwork(nn.Module):
def __init__(self, filters=[512, 256]):
super(UpscaleNetwork, self,).__init__()
self.upscale_block1 = UpscaleBlock(2208, 384, filters[0]) # H16
self.upscale_block2 = UpscaleBlock(filters[0], 192, filters[1]) # H8
def forward(self, raw_input):
input, h2, h4, h8, h16 = raw_input
input, _ = self.upscale_block1((input, h16))
input, cat = self.upscale_block2((input, h8))
return input, cat
class AtrousBlock(nn.Module):
def __init__(self, input_filters, filters, dilation, apply_initial_bn=True):
super(AtrousBlock, self).__init__()
self.initial_bn = nn.BatchNorm2d(input_filters, BATCH_NORM_MOMENTUM)
self.apply_initial_bn = apply_initial_bn
self.conv1 = nn.Conv2d(input_filters, filters*2, 1, 1, 0, bias=False)
self.norm1 = nn.BatchNorm2d(filters*2, BATCH_NORM_MOMENTUM)
self.atrous_conv = nn.Conv2d(filters*2, filters, 3, 1, dilation, dilation, bias=False)
self.norm2 = nn.BatchNorm2d(filters, BATCH_NORM_MOMENTUM)
def forward(self, input):
if self.apply_initial_bn:
input = self.initial_bn(input)
input = self.conv1(input.relu())
input = self.norm1(input)
input = self.atrous_conv(input.relu())
input = self.norm2(input)
return input
class ASSPBlock(nn.Module):
def __init__(self, input_filters=256, cat_filters=448, atrous_filters=128):
super(ASSPBlock, self).__init__()
self.atrous_conv_r3 = AtrousBlock(input_filters, atrous_filters, 3, apply_initial_bn=False)
self.atrous_conv_r6 = AtrousBlock(cat_filters + atrous_filters, atrous_filters, 6)
self.atrous_conv_r12 = AtrousBlock(cat_filters + atrous_filters*2, atrous_filters, 12)
self.atrous_conv_r18 = AtrousBlock(cat_filters + atrous_filters*3, atrous_filters, 18)
self.atrous_conv_r24 = AtrousBlock(cat_filters + atrous_filters*4, atrous_filters, 24)
self.conv = nn.Conv2d(5 * atrous_filters + cat_filters, atrous_filters, 3, 1, 1, bias=ENABLE_BIAS)
def forward(self, input):
input, cat = input
layer1_out = self.atrous_conv_r3(input)
concat1 = torch.cat((cat, layer1_out), 1)
layer2_out = self.atrous_conv_r6(concat1)
concat2 = torch.cat((concat1, layer2_out), 1)
layer3_out = self.atrous_conv_r12(concat2)
concat3 = torch.cat((concat2, layer3_out), 1)
layer4_out = self.atrous_conv_r18(concat3)
concat4 = torch.cat((concat3, layer4_out), 1)
layer5_out = self.atrous_conv_r24(concat4)
concat5 = torch.cat((concat4, layer5_out), 1)
features = activation_fn(self.conv(concat5))
return features
# Code of this layer is taken from official PyTorch implementation
class LPGLayer(nn.Module):
def __init__(self, scale):
super(LPGLayer, self).__init__()
self.scale = scale
self.u = torch.arange(self.scale).reshape([1, 1, self.scale]).float()
self.v = torch.arange(int(self.scale)).reshape([1, self.scale, 1]).float()
def forward(self, plane_eq):
plane_eq_expanded = torch.repeat_interleave(plane_eq, int(self.scale), 2)
plane_eq_expanded = torch.repeat_interleave(plane_eq_expanded, int(self.scale), 3)
n1 = plane_eq_expanded[:, 0, :, :]
n2 = plane_eq_expanded[:, 1, :, :]
n3 = plane_eq_expanded[:, 2, :, :]
n4 = plane_eq_expanded[:, 3, :, :]
u = self.u.repeat(plane_eq.size(0), plane_eq.size(2) * int(self.scale), plane_eq.size(3)).to(device)
u = (u - (self.scale - 1) * 0.5) / self.scale
v = self.v.repeat(plane_eq.size(0), plane_eq.size(2), plane_eq.size(3) * int(self.scale)).to(device)
v = (v - (self.scale - 1) * 0.5) / self.scale
d = n4 / (n1 * u + n2 * v + n3)
d = d.unsqueeze(1)
return d
class Reduction(nn.Module):
def __init__(self, scale, input_filters, is_final=False):
super(Reduction, self).__init__()
reduction_count = int(math.log(input_filters, 2)) - 2
self.reductions = torch.nn.Sequential()
for i in range(reduction_count):
if i != reduction_count-1:
self.reductions.add_module("1x1_reduc_%d_%d" % (scale, i), nn.Sequential(
nn.Conv2d(int(input_filters / math.pow(2, i)), int(input_filters / math.pow(2, i + 1)), 1, 1, 0, bias=ENABLE_BIAS),
activation_fn))
else:
if not is_final:
self.reductions.add_module("1x1_reduc_%d_%d" % (scale, i), nn.Sequential(
nn.Conv2d(int(input_filters / math.pow(2, i)), int(input_filters / math.pow(2, i + 1)), 1, 1, 0, bias=ENABLE_BIAS)))
else:
self.reductions.add_module("1x1_reduc_%d_%d" % (scale, i), nn.Sequential(
nn.Conv2d(int(input_filters / math.pow(2, i)), 1, 1, 1, 0, bias=ENABLE_BIAS), nn.Sigmoid()))
def forward(self, ip):
return self.reductions(ip)
class LPGBlock(nn.Module):
def __init__(self, scale, input_filters=128):
super(LPGBlock, self).__init__()
self.scale = scale
self.reduction = Reduction(scale, input_filters)
self.conv = nn.Conv2d(4, 3, 1, 1, 0)
self.LPGLayer = LPGLayer(scale)
def forward(self, input):
input = self.reduction(input)
plane_parameters = torch.zeros_like(input)
input = self.conv(input)
theta = input[:, 0, :, :].sigmoid() * 3.1415926535 / 6
phi = input[:, 1, :, :].sigmoid() * 3.1415926535 * 2
dist = input[:, 2, :, :].sigmoid() * MAX_DEPTH
plane_parameters[:, 0, :, :] = torch.sin(theta) * torch.cos(phi)
plane_parameters[:, 1, :, :] = torch.sin(theta) * torch.sin(phi)
plane_parameters[:, 2, :, :] = torch.cos(theta)
plane_parameters[:, 3, :, :] = dist
plane_parameters[:, 0:3, :, :] = F.normalize(plane_parameters.clone()[:, 0:3, :, :], 2, 1)
depth = self.LPGLayer(plane_parameters.float())
return depth
class bts_encoder(nn.Module):
def __init__(self):
super(bts_encoder, self).__init__()
self.dense_op_h2 = None
self.dense_op_h4 = None
self.dense_op_h8 = None
self.dense_op_h16 = None
self.dense_features = None
self.dense_feature_extractor = self.initialize_dense_feature_extractor()
self.freeze_batch_norm()
self.initialize_hooks()
def freeze_batch_norm(self):
for module in self.dense_feature_extractor.modules():
if isinstance(module, torch.nn.modules.BatchNorm2d):
module.track_running_stats = True
module.eval()
module.affine = True
module.requires_grad = True
def initialize_dense_feature_extractor(self):
dfe = torchvision.models.densenet161(True, True)
dfe.features.denseblock1.requires_grad = False
dfe.features.denseblock2.requires_grad = False
dfe.features.conv0.requires_grad = False
return dfe
def set_h2(self, module, input_, output):
self.dense_op_h2 = output
def set_h4(self, module, input_, output):
self.dense_op_h4 = output
def set_h8(self, module, input_, output):
self.dense_op_h8 = output
def set_h16(self, module, input_, output):
self.dense_op_h16 = output
def set_dense_features(self, module, input_, output):
self.dense_features = output
def initialize_hooks(self):
self.dense_feature_extractor.features.relu0.register_forward_hook(self.set_h2)
self.dense_feature_extractor.features.pool0.register_forward_hook(self.set_h4)
self.dense_feature_extractor.features.transition1.register_forward_hook(self.set_h8)
self.dense_feature_extractor.features.transition2.register_forward_hook(self.set_h16)
self.dense_feature_extractor.features.norm5.register_forward_hook(self.set_dense_features)
def forward(self, ip):
_ = self.dense_feature_extractor(ip)
joint_input = (self.dense_features.relu(), self.dense_op_h2, self.dense_op_h4, self.dense_op_h8, self.dense_op_h16)
return joint_input
class bts_decoder(nn.Module):
def __init__(self):
super(bts_decoder, self).__init__()
self.UpscaleNet = UpscaleNetwork()
self.DenseASSPNet = ASSPBlock()
self.upscale_block3 = UpscaleBlock(64, 96, 128) # H4
self.upscale_block4 = UpscaleBlock(128, 96, 128) # H2
self.LPGBlock8 = LPGBlock(8, 128)
self.LPGBlock4 = LPGBlock(4, 64) # 64 Filter
self.LPGBlock2 = LPGBlock(2, 64) # 64 Filter
self.upconv_h4 = UpscaleLayer(128, 64)
self.upconv_h2 = UpscaleLayer(64, 32) # 64 Filter
self.upconv_h = UpscaleLayer(64, 32) # 32 filter
self.conv_h4 = nn.Conv2d(161, 64, 3, 1, 1, bias=ENABLE_BIAS) # 64 Filter
self.conv_h2 = nn.Conv2d(129, 64, 3, 1, 1, bias=ENABLE_BIAS) # 64 Filter
self.conv_h1 = nn.Conv2d(36, 32, 3, 1, 1, bias=ENABLE_BIAS)
self.reduction1x1 = Reduction(1, 32, True)
self.final_conv = nn.Conv2d(32, 1, 3, 1, 1, bias=ENABLE_BIAS)
def forward(self, joint_input, focal):
(dense_features, dense_op_h2, dense_op_h4, dense_op_h8, dense_op_h16) = joint_input
upscaled_out = self.UpscaleNet(joint_input)
dense_assp_out = self.DenseASSPNet(upscaled_out)
upconv_h4 = self.upconv_h4(dense_assp_out)
depth_8x8 = self.LPGBlock8(dense_assp_out) / MAX_DEPTH
depth_8x8_ds = nn.functional.interpolate(depth_8x8, scale_factor=1 / 4, mode="nearest")
depth_concat_4x4 = torch.cat((depth_8x8_ds, dense_op_h4, upconv_h4), 1)
conv_h4 = activation_fn(self.conv_h4(depth_concat_4x4))
upconv_h2 = self.upconv_h2(conv_h4)
depth_4x4 = self.LPGBlock4(conv_h4) / MAX_DEPTH
depth_4x4_ds = nn.functional.interpolate(depth_4x4, scale_factor=1 / 2, mode="nearest")
depth_concat_2x2 = torch.cat((depth_4x4_ds, dense_op_h2, upconv_h2), 1)
conv_h2 = activation_fn(self.conv_h2(depth_concat_2x2))
upconv_h = self.upconv_h(conv_h2)
depth_1x1 = self.reduction1x1(upconv_h)
depth_2x2 = self.LPGBlock2(conv_h2) / MAX_DEPTH
depth_concat = torch.cat((upconv_h, depth_1x1, depth_2x2, depth_4x4, depth_8x8), 1)
depth = activation_fn(self.conv_h1(depth_concat))
depth = self.final_conv(depth).sigmoid() * MAX_DEPTH + DEPTH_OFFSET
depth *= focal.view(-1, 1, 1, 1) / 715.0873
return depth, depth_2x2, depth_4x4, depth_8x8
class bts_model(nn.Module):
def __init__(self):
super(bts_model, self).__init__()
self.encoder = bts_encoder()
self.decoder = bts_decoder()
def forward(self, input, focal=715.0873):
joint_input = self.encoder(input)
return self.decoder(joint_input, focal)
class SilogLoss(nn.Module):
def __init__(self):
super(SilogLoss, self).__init__()
def forward(self, ip, target, ratio=10, ratio2=0.85):
ip = ip.reshape(-1)
target = target.reshape(-1)
mask = (target > 1) & (target < 81)
masked_ip = torch.masked_select(ip.float(), mask)
masked_op = torch.masked_select(target, mask)
log_diff = torch.log(masked_ip * ratio) - torch.log(masked_op * ratio)
log_diff_masked = log_diff
silog1 = torch.mean(log_diff_masked ** 2)
silog2 = ratio2 * (torch.mean(log_diff_masked) ** 2)
silog_loss = torch.sqrt(silog1 - silog2) * ratio
return silog_loss
class BtsController:
def __init__(self, log_directory='run_1', logs_folder='tensorboard', backprop_frequency=1):
self.bts = bts_model().float().to(device)
self.optimizer = torch.optim.AdamW([{'params': self.bts.encoder.parameters(), 'weight_decay': 1e-2},
{'params': self.bts.decoder.parameters(), 'weight_decay': 0}],
lr=1e-4, eps=1e-6)
if USE_APEX:
self.bts, self.optimizer = apex.amp.initialize(self.bts, self.optimizer, opt_level=APEX_OPT_LEVEL)
self.bts = torch.nn.DataParallel(self.bts)
self.backprop_frequency = backprop_frequency
log_path = os.path.join(logs_folder, log_directory)
# self.writer = SummaryWriter(log_path)
self.criterion = SilogLoss()
self.learning_rate_scheduler = optim.lr_scheduler.ExponentialLR(self.optimizer, 0.95)
self.current_epoch = 0
self.last_loss = 0
self.current_step = 0
def eval(self):
self.bts = self.bts.eval()
def train(self):
self.bts = self.bts.train()
def predict(self, input, is_channels_first=True, focal=715.0873, normalize=False):
if normalize:
input = A.Compose([A.Normalize()])(**{"image": input})["image"]
if is_channels_first:
tensor_input = torch.tensor(input).unsqueeze(-1).to(device).float().transpose(0, 3).transpose(2,
3).transpose(
1, 2)
else:
tensor_input = torch.tensor(input).unsqueeze(-1).to(device).float().transpose(0, 3).transpose(1,
2).transpose(
2, 3)
shape_changed = False
org_shape = tensor_input.shape[2:]
if org_shape[0] % 32 != 0 or org_shape[1] % 32 != 0:
shape_changed = True
new_shape_y = round(org_shape[0] / 32) * 32
new_shape_x = round(org_shape[1] / 32) * 32
tensor_input = F.interpolate(tensor_input, (new_shape_y, new_shape_x), mode="bilinear")
model_output = self.bts(tensor_input, torch.tensor(focal).unsqueeze(0))[0][0].detach().unsqueeze(0)
if shape_changed:
model_output = F.interpolate(model_output, (org_shape[0], org_shape[1]), mode="nearest")
return model_output.cpu().squeeze()
@staticmethod
def depth_map_to_rgbimg(depth_map):
depth_map = np.asarray(np.squeeze((255 - torch.clamp_max(depth_map * 4, 250)).byte().numpy()), np.uint8)
depth_map = np.asarray(cv2.cvtColor(depth_map, cv2.COLOR_GRAY2RGB), np.uint8)
return depth_map
@staticmethod
def depth_map_to_grayimg(depth_map):
depth_map = np.asarray(np.squeeze((255 - torch.clamp_max(depth_map * 4, 250)).byte().numpy()), np.uint8)
return depth_map
@staticmethod
def normalize_img(image):
transformation = A.Compose([
A.Normalize()
])
return transformation(**{"image": image})["image"]
# def run_train_step(self, tensor_input, tensor_output, tensor_focal):
# tensor_input, tensor_output = tensor_input.to(device), tensor_output.to(device)
# # Get Models prediction and calculate loss
# model_output, depth2, depth4, depth8 = self.bts(tensor_input, tensor_focal)
#
# loss = self.criterion(model_output, tensor_output) * 1/self.backprop_frequency
#
# if USE_APEX:
# with apex.amp.scale_loss(loss, self.optimizer) as scaled_loss:
# scaled_loss.backward()
# else:
# loss.backward()
#
# if self.current_step % self.backprop_frequency == 0: # Make update once every x steps
# torch.nn.utils.clip_grad_norm_(self.bts.parameters(), 5)
# self.optimizer.step()
# self.optimizer.zero_grad()
#
# if self.current_step % 100 == 0:
# self.writer.add_scalar("Loss", loss.item() * self.backprop_frequency / tensor_input.shape[0], self.current_step)
#
# if self.current_step % 1000 == 0:
# img = tensor_input[0].detach().transpose(0, 2).transpose(0, 1).cpu().numpy().astype(np.uint8)
# self.writer.add_image("Input", img, self.current_step, None, "HWC")
#
# visual_result = (255-torch.clamp_max(torchvision.utils.make_grid([tensor_output[0], model_output[0]]) * 5, 250)).byte()
#
# self.writer.add_image("Output/Prediction", visual_result, self.current_step)
# depths = [depth2[0], depth4[0], depth8[0]]
# depths = [depth*MAX_DEPTH for depth in depths]
# depth_visual = (255-torch.clamp_max(torchvision.utils.make_grid(depths) * 5, 250)).byte()
#
# self.writer.add_image("Depths", depth_visual, self.current_step)
#
# self.current_step += 1
def save_model(self, path):
save_dict = {
'epoch': self.current_epoch,
'model_state_dict': self.bts.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
"scheduler_state_dict": self.learning_rate_scheduler.state_dict(),
'loss': self.last_loss,
"last_step": self.current_step
}
if USE_APEX:
save_dict["amp"] = apex.amp.state_dict()
save_dict["opt_level"] = APEX_OPT_LEVEL
torch.save(save_dict, path)
def load_model(self, path):
dict = torch.load(path, map_location = device)
if USE_APEX:
saved_opt_level = dict["opt_level"]
self.bts, self.optimizer = apex.amp.initialize(self.bts, self.optimizer, opt_level=saved_opt_level)
apex.amp.load_state_dict(dict["amp"])
self.current_epoch = dict["epoch"]
self.bts.load_state_dict(dict["model_state_dict"])
self.bts = self.bts.float().to(device)
self.optimizer.load_state_dict(dict["optimizer_state_dict"])
self.learning_rate_scheduler.load_state_dict(dict["scheduler_state_dict"])
self.last_loss = dict["loss"]
self.current_step = dict["last_step"]
return dict
|