Spaces:
Build error
Build error
ohjho
commited on
Commit
•
a327756
1
Parent(s):
5a54fe2
updated the app for DPT model
Browse files
DPT.py
CHANGED
@@ -14,6 +14,7 @@ def load_model(model_type = 'DPT_Large'):
|
|
14 |
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
15 |
|
16 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
|
17 |
midas.to(device)
|
18 |
midas.eval()
|
19 |
|
@@ -27,13 +28,13 @@ def load_model(model_type = 'DPT_Large'):
|
|
27 |
'midas': midas, 'device': device, 'transform': transform
|
28 |
}
|
29 |
|
30 |
-
def inference(img_array_rgb,
|
31 |
'''run DPT model and returns a PIL image'''
|
32 |
# img = cv2.imread(img.name)
|
33 |
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
34 |
-
midas =
|
35 |
-
transform =
|
36 |
-
device =
|
37 |
input_batch = transform(img_array_rgb).to(device)
|
38 |
|
39 |
with torch.no_grad():
|
|
|
14 |
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
15 |
|
16 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
17 |
+
print(f'---DPT will use device: {device}')
|
18 |
midas.to(device)
|
19 |
midas.eval()
|
20 |
|
|
|
28 |
'midas': midas, 'device': device, 'transform': transform
|
29 |
}
|
30 |
|
31 |
+
def inference(img_array_rgb, model_obj):
|
32 |
'''run DPT model and returns a PIL image'''
|
33 |
# img = cv2.imread(img.name)
|
34 |
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
35 |
+
midas = model_obj['midas']
|
36 |
+
transform = model_obj['transform']
|
37 |
+
device = model_obj['device']
|
38 |
input_batch = transform(img_array_rgb).to(device)
|
39 |
|
40 |
with torch.no_grad():
|
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
|
3 |
-
import os, sys, io
|
4 |
import urllib.request as urllib
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
|
8 |
-
import DPT
|
9 |
|
10 |
### Some Utils Functions ###
|
11 |
def get_image(st_asset = st.sidebar, as_np_arr = False, extension_list = ['jpg', 'jpeg', 'png']):
|
@@ -70,12 +70,31 @@ def im_draw_bbox(pil_im, x0, y0, x1, y1, color = 'black', width = 3, caption = N
|
|
70 |
return Image.fromarray(im_array)
|
71 |
|
72 |
### Streamlit App ###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
return depth_im
|
77 |
|
78 |
-
def Main(
|
79 |
st.set_page_config(layout = 'wide')
|
80 |
l_col, r_col = st.columns(2)
|
81 |
show_miro_logo(st_asset = l_col)
|
@@ -84,20 +103,18 @@ def Main(model_dict):
|
|
84 |
Comparsion of two models: [BTS (CNN)](https://github.com/ErenBalatkan/Bts-PyTorch)
|
85 |
and [DPT (Transformer)](https://huggingface.co/Intel/dpt-large)
|
86 |
''')
|
87 |
-
|
88 |
im = get_image(st_asset = r_col.expander('Input Image', expanded = True), extension_list = ['jpg','jpeg'])
|
89 |
-
model_name =
|
90 |
|
91 |
if im:
|
92 |
-
|
93 |
-
d_im = mod_DPT(pil_im = im, model_def=model_def)
|
94 |
|
95 |
l_col, r_col = st.columns(2)
|
96 |
l_col.image(im, caption = 'Input Image')
|
97 |
-
r_col.image(
|
98 |
else:
|
99 |
st.warning(f'please provide an image :point_up:')
|
100 |
|
101 |
if __name__ == '__main__':
|
102 |
-
|
103 |
-
Main(model_dict = model_dict)
|
|
|
1 |
import streamlit as st
|
2 |
|
3 |
+
import os, sys, io, time
|
4 |
import urllib.request as urllib
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
|
8 |
+
import DPT, BTS_infer
|
9 |
|
10 |
### Some Utils Functions ###
|
11 |
def get_image(st_asset = st.sidebar, as_np_arr = False, extension_list = ['jpg', 'jpeg', 'png']):
|
|
|
70 |
return Image.fromarray(im_array)
|
71 |
|
72 |
### Streamlit App ###
|
73 |
+
@st.cache(allow_output_mutation = True)
|
74 |
+
def get_model_zoo():
|
75 |
+
model_zoo = {
|
76 |
+
'DPT': {'infer_func': DPT.inference,'model': DPT.load_model()},
|
77 |
+
# 'BTS': {'infer_func': BTS_infer.inference,'model': BTS_infer.get_model()}
|
78 |
+
}
|
79 |
+
return model_zoo
|
80 |
|
81 |
+
@st.cache(suppress_st_warning=True)
|
82 |
+
def mono_depth(pil_im, model_name):
|
83 |
+
s_time = time.time()
|
84 |
+
model_zoo = get_model_zoo()
|
85 |
+
infer_func = model_zoo[model_name]['infer_func']
|
86 |
+
model_obj = model_zoo[model_name]['model']
|
87 |
+
depth_im = infer_func(img_array_rgb = np.array(pil_im),
|
88 |
+
model_obj = model_obj)
|
89 |
+
st.info(f'''
|
90 |
+
model name: {model_name}\n
|
91 |
+
inference time: `{round(time.time()-s_time,2)}` seconds\n
|
92 |
+
depth image shape: {np.array(depth_im).shape}\n
|
93 |
+
depth image type: {type(depth_im)}
|
94 |
+
''')
|
95 |
return depth_im
|
96 |
|
97 |
+
def Main():
|
98 |
st.set_page_config(layout = 'wide')
|
99 |
l_col, r_col = st.columns(2)
|
100 |
show_miro_logo(st_asset = l_col)
|
|
|
103 |
Comparsion of two models: [BTS (CNN)](https://github.com/ErenBalatkan/Bts-PyTorch)
|
104 |
and [DPT (Transformer)](https://huggingface.co/Intel/dpt-large)
|
105 |
''')
|
106 |
+
model_zoo = get_model_zoo()
|
107 |
im = get_image(st_asset = r_col.expander('Input Image', expanded = True), extension_list = ['jpg','jpeg'])
|
108 |
+
model_name = l_col.selectbox('Pick Model', options = list(model_zoo.keys()))
|
109 |
|
110 |
if im:
|
111 |
+
d_im = mono_depth(pil_im = im, model_name=model_name)
|
|
|
112 |
|
113 |
l_col, r_col = st.columns(2)
|
114 |
l_col.image(im, caption = 'Input Image')
|
115 |
+
r_col.image(d_im, caption = 'Depth Map')
|
116 |
else:
|
117 |
st.warning(f'please provide an image :point_up:')
|
118 |
|
119 |
if __name__ == '__main__':
|
120 |
+
Main()
|
|