Spaces:
Build error
Build error
ohjho
commited on
Commit
•
dfcd969
1
Parent(s):
22d0af0
testing DPT app
Browse files- .gitignore +129 -0
- DPT.py +62 -0
- app.py +103 -0
- requirements.txt +10 -0
.gitignore
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hugging Face Space doesn't like binary files
|
2 |
+
*.jpg
|
3 |
+
|
4 |
+
# Byte-compiled / optimized / DLL files
|
5 |
+
__pycache__/
|
6 |
+
data/
|
7 |
+
results/
|
8 |
+
weights/
|
9 |
+
*.py[cod]
|
10 |
+
*$py.class
|
11 |
+
|
12 |
+
# C extensions
|
13 |
+
*.so
|
14 |
+
|
15 |
+
# Distribution / packaging
|
16 |
+
.Python
|
17 |
+
build/
|
18 |
+
develop-eggs/
|
19 |
+
dist/
|
20 |
+
downloads/
|
21 |
+
eggs/
|
22 |
+
.eggs/
|
23 |
+
lib/
|
24 |
+
lib64/
|
25 |
+
parts/
|
26 |
+
sdist/
|
27 |
+
var/
|
28 |
+
wheels/
|
29 |
+
pip-wheel-metadata/
|
30 |
+
share/python-wheels/
|
31 |
+
*.egg-info/
|
32 |
+
.installed.cfg
|
33 |
+
*.egg
|
34 |
+
MANIFEST
|
35 |
+
|
36 |
+
# PyInstaller
|
37 |
+
# Usually these files are written by a python script from a template
|
38 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
39 |
+
*.manifest
|
40 |
+
*.spec
|
41 |
+
|
42 |
+
# Installer logs
|
43 |
+
pip-log.txt
|
44 |
+
pip-delete-this-directory.txt
|
45 |
+
|
46 |
+
# Unit test / coverage reports
|
47 |
+
htmlcov/
|
48 |
+
.tox/
|
49 |
+
.nox/
|
50 |
+
.coverage
|
51 |
+
.coverage.*
|
52 |
+
.cache
|
53 |
+
nosetests.xml
|
54 |
+
coverage.xml
|
55 |
+
*.cover
|
56 |
+
.hypothesis/
|
57 |
+
.pytest_cache/
|
58 |
+
|
59 |
+
# Translations
|
60 |
+
*.mo
|
61 |
+
*.pot
|
62 |
+
|
63 |
+
# Django stuff:
|
64 |
+
*.log
|
65 |
+
local_settings.py
|
66 |
+
db.sqlite3
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
.python-version
|
90 |
+
|
91 |
+
# pipenv
|
92 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
93 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
94 |
+
# having no cross-platform support, pipenv may install dependencies that don’t work, or not
|
95 |
+
# install all needed dependencies.
|
96 |
+
#Pipfile.lock
|
97 |
+
|
98 |
+
# celery beat schedule file
|
99 |
+
celerybeat-schedule
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
DPT.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2, torch
|
2 |
+
import urllib.request
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
MODEL_DICT = {
|
7 |
+
"DPT_Large": "MiDaS v3 - Large (highest accuracy, slowest inference speed)",
|
8 |
+
"DPT_Hybrid": "MiDaS v3 - Hybrid (medium accuracy, medium inference speed)",
|
9 |
+
"MiDaS_small": "MiDaS v2.1 - Small (lowest accuracy, highest inference speed)"
|
10 |
+
}
|
11 |
+
|
12 |
+
def load_model(model_type = 'DPT_Large'):
|
13 |
+
assert model_type in MODEL_DICT.keys(), f'{model_type} is not a valid model_type: {MODEL_DICT.keys()}'
|
14 |
+
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
15 |
+
|
16 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
17 |
+
midas.to(device)
|
18 |
+
midas.eval()
|
19 |
+
|
20 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
21 |
+
|
22 |
+
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
|
23 |
+
transform = midas_transforms.dpt_transform
|
24 |
+
else:
|
25 |
+
transform = midas_transforms.small_transform
|
26 |
+
return {
|
27 |
+
'midas': midas, 'device': device, 'transform': transform
|
28 |
+
}
|
29 |
+
|
30 |
+
def inference(img_array_rgb, model_def):
|
31 |
+
'''run DPT model and returns a PIL image'''
|
32 |
+
# img = cv2.imread(img.name)
|
33 |
+
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
34 |
+
midas = model_def['midas']
|
35 |
+
transform = model_def['transform']
|
36 |
+
device = model_def['device']
|
37 |
+
input_batch = transform(img_array_rgb).to(device)
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
prediction = midas(input_batch)
|
41 |
+
|
42 |
+
prediction = torch.nn.functional.interpolate(
|
43 |
+
prediction.unsqueeze(1),
|
44 |
+
size=img_array_rgb.shape[:2],
|
45 |
+
mode="bicubic",
|
46 |
+
align_corners=False,
|
47 |
+
).squeeze()
|
48 |
+
|
49 |
+
output = prediction.cpu().numpy()
|
50 |
+
formatted = (output * 255 / np.max(output)).astype('uint8')
|
51 |
+
img = Image.fromarray(formatted)
|
52 |
+
return img
|
53 |
+
|
54 |
+
# inputs = gr.inputs.Image(type='file', label="Original Image")
|
55 |
+
# outputs = gr.outputs.Image(type="pil",label="Output Image")
|
56 |
+
|
57 |
+
# title = "DPT-Large"
|
58 |
+
# description = "Gradio demo for DPT-Large:Vision Transformers for Dense Prediction.To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
59 |
+
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2103.13413' target='_blank'>Vision Transformers for Dense Prediction</a> | <a href='https://github.com/intel-isl/MiDaS' target='_blank'>Github Repo</a></p>"
|
60 |
+
#
|
61 |
+
# examples=[['dog.jpg']]
|
62 |
+
# gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False,examples=examples, enable_queue=True).launch(debug=True)
|
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
import os, sys, io
|
4 |
+
import urllib.request as urllib
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
import DPT
|
9 |
+
|
10 |
+
### Some Utils Functions ###
|
11 |
+
def get_image(st_asset = st.sidebar, as_np_arr = False, extension_list = ['jpg', 'jpeg', 'png']):
|
12 |
+
image_url, image_fh = None, None
|
13 |
+
if st_asset.checkbox('use image URL?'):
|
14 |
+
image_url = st_asset.text_input("Enter Image URL")
|
15 |
+
else:
|
16 |
+
image_fh = st_asset.file_uploader(label = "Update your image", type = extension_list)
|
17 |
+
|
18 |
+
im = None
|
19 |
+
if image_url:
|
20 |
+
response = urllib.urlopen(image_url)
|
21 |
+
im = Image.open(io.BytesIO(bytearray(response.read())))
|
22 |
+
elif image_fh:
|
23 |
+
im = Image.open(image_fh)
|
24 |
+
|
25 |
+
if im and as_np_arr:
|
26 |
+
im = np.array(im)
|
27 |
+
return im
|
28 |
+
|
29 |
+
def show_miro_logo(use_column_width = False, width = 100, st_asset= st.sidebar):
|
30 |
+
logo_url = 'https://miro.medium.com/max/1400/0*qLL-32srlq6Y_iTm.png'
|
31 |
+
st_asset.image(logo_url, use_column_width = use_column_width, channels = 'BGR', output_format = 'PNG', width = width)
|
32 |
+
|
33 |
+
def im_draw_bbox(pil_im, x0, y0, x1, y1, color = 'black', width = 3, caption = None,
|
34 |
+
bbv_label_only = False):
|
35 |
+
'''
|
36 |
+
draw bounding box on the input image pil_im in-place
|
37 |
+
Args:
|
38 |
+
color: color name as read by Pillow.ImageColor
|
39 |
+
use_bbv: use bbox_visualizer
|
40 |
+
'''
|
41 |
+
import bbox_visualizer as bbv
|
42 |
+
if any([type(i)== float for i in [x0,y0,x1,y1]]):
|
43 |
+
warnings.warn(f'im_draw_bbox: at least one of x0,y0,x1,y1 is of the type float and is converted to int.')
|
44 |
+
x0 = int(x0)
|
45 |
+
y0 = int(y0)
|
46 |
+
x1 = int(x1)
|
47 |
+
y1 = int(y1)
|
48 |
+
|
49 |
+
if bbv_label_only:
|
50 |
+
if caption:
|
51 |
+
im_array = bbv.draw_flag_with_label(np.array(pil_im),
|
52 |
+
label = caption,
|
53 |
+
bbox = [x0,y0,x1,y1],
|
54 |
+
line_color = ImageColor.getrgb(color),
|
55 |
+
text_bg_color = ImageColor.getrgb(color)
|
56 |
+
)
|
57 |
+
else:
|
58 |
+
raise ValueError(f'im_draw_bbox: bbv_label_only is True but caption is None')
|
59 |
+
else:
|
60 |
+
im_array = bbv.draw_rectangle(np.array(pil_im),
|
61 |
+
bbox = [x0, y0, x1, y1],
|
62 |
+
bbox_color = ImageColor.getrgb(color),
|
63 |
+
thickness = width
|
64 |
+
)
|
65 |
+
im_array = bbv.add_label(
|
66 |
+
im_array, label = caption,
|
67 |
+
bbox = [x0,y0,x1,y1],
|
68 |
+
text_bg_color = ImageColor.getrgb(color)
|
69 |
+
)if caption else im_array
|
70 |
+
return Image.fromarray(im_array)
|
71 |
+
|
72 |
+
### Streamlit App ###
|
73 |
+
|
74 |
+
def mod_DPT(pil_im, model_def):
|
75 |
+
depth_im = DPT.inference(img_array_rgb = np.array(pil_im), model_def = model_def)
|
76 |
+
return depth_im
|
77 |
+
|
78 |
+
def Main(model_dict):
|
79 |
+
st.set_page_config(layout = 'wide')
|
80 |
+
l_col, r_col = st.columns(2)
|
81 |
+
show_miro_logo(st_asset = l_col)
|
82 |
+
with l_col.expander('Monocular Depth: CNN vs Transformers'):
|
83 |
+
st.info(f'''
|
84 |
+
Comparsion of two models: [BTS (CNN)](https://github.com/ErenBalatkan/Bts-PyTorch)
|
85 |
+
and [DPT (Transformer)](https://huggingface.co/Intel/dpt-large)
|
86 |
+
''')
|
87 |
+
|
88 |
+
im = get_image(st_asset = r_col.expander('Input Image', expanded = True), extension_list = ['jpg','jpeg'])
|
89 |
+
model_name = r_col.selectbox('Pick Model', options = ['DPT','BTS'])
|
90 |
+
|
91 |
+
if im:
|
92 |
+
model_def = DPT.load_model()
|
93 |
+
d_im = mod_DPT(pil_im = im, model_def=model_def)
|
94 |
+
|
95 |
+
l_col, r_col = st.columns(2)
|
96 |
+
l_col.image(im, caption = 'Input Image')
|
97 |
+
r_col.image(saliency_im, caption = 'Depth Map')
|
98 |
+
else:
|
99 |
+
st.warning(f'please provide an image :point_up:')
|
100 |
+
|
101 |
+
if __name__ == '__main__':
|
102 |
+
model_dict = load_model()
|
103 |
+
Main(model_dict = model_dict)
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python-headless>=4.5.5.64
|
2 |
+
torch==1.8.0
|
3 |
+
#matplotlib==3.1.3
|
4 |
+
numpy>=1.15.2
|
5 |
+
Pillow>=6.2.0
|
6 |
+
# DPT
|
7 |
+
timm==0.5.4
|
8 |
+
# BTS
|
9 |
+
albumentations>=1.1.0
|
10 |
+
torchvision==0.9.0
|