Spaces:
Sleeping
Sleeping
import math | |
import torch | |
import warnings | |
# https://github.com/pytorch/audio/blob/d9942bae249329bd8c8bf5c92f0f108595fcb84f/torchaudio/functional/functional.py#L495 | |
def _create_triangular_filterbank( | |
all_freqs: torch.Tensor, | |
f_pts: torch.Tensor, | |
) -> torch.Tensor: | |
"""Create a triangular filter bank. | |
Args: | |
all_freqs (Tensor): STFT freq points of size (`n_freqs`). | |
f_pts (Tensor): Filter mid points of size (`n_filter`). | |
Returns: | |
fb (Tensor): The filter bank of size (`n_freqs`, `n_filter`). | |
""" | |
# Adopted from Librosa | |
# calculate the difference between each filter mid point and each stft freq point in hertz | |
f_diff = f_pts[1:] - f_pts[:-1] # (n_filter + 1) | |
slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_filter + 2) | |
# create overlapping triangles | |
zero = torch.zeros(1) | |
down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_filter) | |
up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_filter) | |
fb = torch.max(zero, torch.min(down_slopes, up_slopes)) | |
return fb | |
# https://github.com/pytorch/audio/blob/d9942bae249329bd8c8bf5c92f0f108595fcb84f/torchaudio/prototype/functional/functional.py#L6 | |
def _hz_to_bark(freqs: float, bark_scale: str = "traunmuller") -> float: | |
r"""Convert Hz to Barks. | |
Args: | |
freqs (float): Frequencies in Hz | |
bark_scale (str, optional): Scale to use: ``traunmuller``, ``schroeder`` or ``wang``. (Default: ``traunmuller``) | |
Returns: | |
barks (float): Frequency in Barks | |
""" | |
if bark_scale not in ["schroeder", "traunmuller", "wang"]: | |
raise ValueError( | |
'bark_scale should be one of "schroeder", "traunmuller" or "wang".' | |
) | |
if bark_scale == "wang": | |
return 6.0 * math.asinh(freqs / 600.0) | |
elif bark_scale == "schroeder": | |
return 7.0 * math.asinh(freqs / 650.0) | |
# Traunmuller Bark scale | |
barks = ((26.81 * freqs) / (1960.0 + freqs)) - 0.53 | |
# Bark value correction | |
if barks < 2: | |
barks += 0.15 * (2 - barks) | |
elif barks > 20.1: | |
barks += 0.22 * (barks - 20.1) | |
return barks | |
def _bark_to_hz(barks: torch.Tensor, bark_scale: str = "traunmuller") -> torch.Tensor: | |
"""Convert bark bin numbers to frequencies. | |
Args: | |
barks (torch.Tensor): Bark frequencies | |
bark_scale (str, optional): Scale to use: ``traunmuller``,``schroeder`` or ``wang``. (Default: ``traunmuller``) | |
Returns: | |
freqs (torch.Tensor): Barks converted in Hz | |
""" | |
if bark_scale not in ["schroeder", "traunmuller", "wang"]: | |
raise ValueError( | |
'bark_scale should be one of "traunmuller", "schroeder" or "wang".' | |
) | |
if bark_scale == "wang": | |
return 600.0 * torch.sinh(barks / 6.0) | |
elif bark_scale == "schroeder": | |
return 650.0 * torch.sinh(barks / 7.0) | |
# Bark value correction | |
if any(barks < 2): | |
idx = barks < 2 | |
barks[idx] = (barks[idx] - 0.3) / 0.85 | |
elif any(barks > 20.1): | |
idx = barks > 20.1 | |
barks[idx] = (barks[idx] + 4.422) / 1.22 | |
# Traunmuller Bark scale | |
freqs = 1960 * ((barks + 0.53) / (26.28 - barks)) | |
return freqs | |
def _hz_to_octs(freqs, tuning=0.0, bins_per_octave=12): | |
a440 = 440.0 * 2.0 ** (tuning / bins_per_octave) | |
return torch.log2(freqs / (a440 / 16)) | |
def barkscale_fbanks( | |
n_freqs: int, | |
f_min: float, | |
f_max: float, | |
n_barks: int, | |
sample_rate: int, | |
bark_scale: str = "traunmuller", | |
) -> torch.Tensor: | |
r"""Create a frequency bin conversion matrix. | |
.. devices:: CPU | |
.. properties:: TorchScript | |
.. image:: https://download.pytorch.org/torchaudio/doc-assets/bark_fbanks.png | |
:alt: Visualization of generated filter bank | |
Args: | |
n_freqs (int): Number of frequencies to highlight/apply | |
f_min (float): Minimum frequency (Hz) | |
f_max (float): Maximum frequency (Hz) | |
n_barks (int): Number of mel filterbanks | |
sample_rate (int): Sample rate of the audio waveform | |
bark_scale (str, optional): Scale to use: ``traunmuller``,``schroeder`` or ``wang``. (Default: ``traunmuller``) | |
Returns: | |
torch.Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_barks``) | |
meaning number of frequencies to highlight/apply to x the number of filterbanks. | |
Each column is a filterbank so that assuming there is a matrix A of | |
size (..., ``n_freqs``), the applied result would be | |
``A * barkscale_fbanks(A.size(-1), ...)``. | |
""" | |
# freq bins | |
all_freqs = torch.linspace(0, sample_rate // 2, n_freqs) | |
# calculate bark freq bins | |
m_min = _hz_to_bark(f_min, bark_scale=bark_scale) | |
m_max = _hz_to_bark(f_max, bark_scale=bark_scale) | |
m_pts = torch.linspace(m_min, m_max, n_barks + 2) | |
f_pts = _bark_to_hz(m_pts, bark_scale=bark_scale) | |
# create filterbank | |
fb = _create_triangular_filterbank(all_freqs, f_pts) | |
if (fb.max(dim=0).values == 0.0).any(): | |
warnings.warn( | |
"At least one bark filterbank has all zero values. " | |
f"The value for `n_barks` ({n_barks}) may be set too high. " | |
f"Or, the value for `n_freqs` ({n_freqs}) may be set too low." | |
) | |
return fb |