Spaces:
Sleeping
Sleeping
""" | |
Utility File | |
containing functions for neural networks | |
""" | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.nn.init as init | |
import torch | |
import torchaudio | |
# 2-dimensional convolutional layer | |
# in the order of conv -> norm -> activation | |
class Conv2d_layer(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, \ | |
stride=1, \ | |
padding="SAME", dilation=(1,1), bias=True, \ | |
norm="batch", activation="relu", \ | |
mode="conv"): | |
super(Conv2d_layer, self).__init__() | |
self.conv2d = nn.Sequential() | |
if isinstance(kernel_size, int): | |
kernel_size = [kernel_size, kernel_size] | |
if isinstance(stride, int): | |
stride = [stride, stride] | |
if isinstance(dilation, int): | |
dilation = [dilation, dilation] | |
''' padding ''' | |
if mode=="deconv": | |
padding = tuple(int((current_kernel - 1)/2) for current_kernel in kernel_size) | |
out_padding = tuple(0 if current_stride == 1 else 1 for current_stride in stride) | |
elif mode=="conv": | |
if padding == "SAME": | |
f_pad = int((kernel_size[0]-1) * dilation[0]) | |
t_pad = int((kernel_size[1]-1) * dilation[1]) | |
t_l_pad = int(t_pad//2) | |
t_r_pad = t_pad - t_l_pad | |
f_l_pad = int(f_pad//2) | |
f_r_pad = f_pad - f_l_pad | |
padding_area = (t_l_pad, t_r_pad, f_l_pad, f_r_pad) | |
elif padding == "VALID": | |
padding = 0 | |
else: | |
pass | |
''' convolutional layer ''' | |
if mode=="deconv": | |
self.conv2d.add_module("deconv2d", nn.ConvTranspose2d(in_channels, out_channels, \ | |
(kernel_size[0], kernel_size[1]), \ | |
stride=stride, \ | |
padding=padding, output_padding=out_padding, \ | |
dilation=dilation, \ | |
bias=bias)) | |
elif mode=="conv": | |
self.conv2d.add_module(f"{mode}2d_pad", nn.ReflectionPad2d(padding_area)) | |
self.conv2d.add_module(f"{mode}2d", nn.Conv2d(in_channels, out_channels, \ | |
(kernel_size[0], kernel_size[1]), \ | |
stride=stride, \ | |
padding=0, \ | |
dilation=dilation, \ | |
bias=bias)) | |
''' normalization ''' | |
if norm=="batch": | |
self.conv2d.add_module("batch_norm", nn.BatchNorm2d(out_channels)) | |
''' activation ''' | |
if activation=="relu": | |
self.conv2d.add_module("relu", nn.ReLU()) | |
elif activation=="lrelu": | |
self.conv2d.add_module("lrelu", nn.LeakyReLU()) | |
def forward(self, input): | |
# input shape should be : batch x channel x height x width | |
output = self.conv2d(input) | |
return output | |
# 1-dimensional convolutional layer | |
# in the order of conv -> norm -> activation | |
class Conv1d_layer(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, \ | |
stride=1, \ | |
padding="SAME", dilation=1, bias=True, \ | |
norm="batch", activation="relu", \ | |
mode="conv"): | |
super(Conv1d_layer, self).__init__() | |
self.conv1d = nn.Sequential() | |
''' padding ''' | |
if mode=="deconv": | |
padding = int(dilation * (kernel_size-1) / 2) | |
out_padding = 0 if stride==1 else 1 | |
elif mode=="conv" or "alias_free" in mode: | |
if padding == "SAME": | |
pad = int((kernel_size-1) * dilation) | |
l_pad = int(pad//2) | |
r_pad = pad - l_pad | |
padding_area = (l_pad, r_pad) | |
elif padding == "VALID": | |
padding_area = (0, 0) | |
else: | |
pass | |
''' convolutional layer ''' | |
if mode=="deconv": | |
self.conv1d.add_module("deconv1d", nn.ConvTranspose1d(in_channels, out_channels, kernel_size, \ | |
stride=stride, padding=padding, output_padding=out_padding, \ | |
dilation=dilation, \ | |
bias=bias)) | |
elif mode=="conv": | |
self.conv1d.add_module(f"{mode}1d_pad", nn.ReflectionPad1d(padding_area)) | |
self.conv1d.add_module(f"{mode}1d", nn.Conv1d(in_channels, out_channels, kernel_size, \ | |
stride=stride, padding=0, \ | |
dilation=dilation, \ | |
bias=bias)) | |
elif "alias_free" in mode: | |
if "up" in mode: | |
up_factor = stride * 2 | |
down_factor = 2 | |
elif "down" in mode: | |
up_factor = 2 | |
down_factor = stride * 2 | |
else: | |
raise ValueError("choose alias-free method : 'up' or 'down'") | |
# procedure : conv -> upsample -> lrelu -> low-pass filter -> downsample | |
# the torchaudio.transforms.Resample's default resampling_method is 'sinc_interpolation' which performs low-pass filter during the process | |
# details at https://pytorch.org/audio/stable/transforms.html | |
self.conv1d.add_module(f"{mode}1d_pad", nn.ReflectionPad1d(padding_area)) | |
self.conv1d.add_module(f"{mode}1d", nn.Conv1d(in_channels, out_channels, kernel_size, \ | |
stride=1, padding=0, \ | |
dilation=dilation, \ | |
bias=bias)) | |
self.conv1d.add_module(f"{mode}upsample", torchaudio.transforms.Resample(orig_freq=1, new_freq=up_factor)) | |
self.conv1d.add_module(f"{mode}lrelu", nn.LeakyReLU()) | |
self.conv1d.add_module(f"{mode}downsample", torchaudio.transforms.Resample(orig_freq=down_factor, new_freq=1)) | |
''' normalization ''' | |
if norm=="batch": | |
self.conv1d.add_module("batch_norm", nn.BatchNorm1d(out_channels)) | |
# self.conv1d.add_module("batch_norm", nn.SyncBatchNorm(out_channels)) | |
''' activation ''' | |
if 'alias_free' not in mode: | |
if activation=="relu": | |
self.conv1d.add_module("relu", nn.ReLU()) | |
elif activation=="lrelu": | |
self.conv1d.add_module("lrelu", nn.LeakyReLU()) | |
def forward(self, input): | |
# input shape should be : batch x channel x height x width | |
output = self.conv1d(input) | |
return output | |
# Residual Block | |
# the input is added after the first convolutional layer, retaining its original channel size | |
# therefore, the second convolutional layer's output channel may differ | |
class Res_ConvBlock(nn.Module): | |
def __init__(self, dimension, \ | |
in_channels, out_channels, \ | |
kernel_size, \ | |
stride=1, padding="SAME", \ | |
dilation=1, \ | |
bias=True, \ | |
norm="batch", \ | |
activation="relu", last_activation="relu", \ | |
mode="conv"): | |
super(Res_ConvBlock, self).__init__() | |
if dimension==1: | |
self.conv1 = Conv1d_layer(in_channels, in_channels, kernel_size, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=activation) | |
self.conv2 = Conv1d_layer(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=last_activation, mode=mode) | |
elif dimension==2: | |
self.conv1 = Conv2d_layer(in_channels, in_channels, kernel_size, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=activation) | |
self.conv2 = Conv2d_layer(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=last_activation, mode=mode) | |
def forward(self, input): | |
c1_out = self.conv1(input) + input | |
c2_out = self.conv2(c1_out) | |
return c2_out | |
# Convoluaionl Block | |
# consists of multiple (number of layer_num) convolutional layers | |
# only the final convoluational layer outputs the desired 'out_channels' | |
class ConvBlock(nn.Module): | |
def __init__(self, dimension, layer_num, \ | |
in_channels, out_channels, \ | |
kernel_size, \ | |
stride=1, padding="SAME", \ | |
dilation=1, \ | |
bias=True, \ | |
norm="batch", \ | |
activation="relu", last_activation="relu", \ | |
mode="conv"): | |
super(ConvBlock, self).__init__() | |
conv_block = [] | |
if dimension==1: | |
for i in range(layer_num-1): | |
conv_block.append(Conv1d_layer(in_channels, in_channels, kernel_size, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=activation)) | |
conv_block.append(Conv1d_layer(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=last_activation, mode=mode)) | |
elif dimension==2: | |
for i in range(layer_num-1): | |
conv_block.append(Conv2d_layer(in_channels, in_channels, kernel_size, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=activation)) | |
conv_block.append(Conv2d_layer(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=last_activation, mode=mode)) | |
self.conv_block = nn.Sequential(*conv_block) | |
def forward(self, input): | |
return self.conv_block(input) | |
# Feature-wise Linear Modulation | |
class FiLM(nn.Module): | |
def __init__(self, condition_len=2048, feature_len=1024): | |
super(FiLM, self).__init__() | |
self.film_fc = nn.Linear(condition_len, feature_len*2) | |
self.feat_len = feature_len | |
def forward(self, feature, condition, sefa=None): | |
# SeFA | |
if sefa: | |
weight = self.film_fc.weight.T | |
weight = weight / torch.linalg.norm((weight+1e-07), dim=0, keepdims=True) | |
eigen_values, eigen_vectors = torch.eig(torch.matmul(weight, weight.T), eigenvectors=True) | |
####### custom parameters ####### | |
chosen_eig_idx = sefa[0] | |
alpha = eigen_values[chosen_eig_idx][0] * sefa[1] | |
################################# | |
An = eigen_vectors[chosen_eig_idx].repeat(condition.shape[0], 1) | |
alpha_An = alpha * An | |
condition += alpha_An | |
film_factor = self.film_fc(condition).unsqueeze(-1) | |
r, b = torch.split(film_factor, self.feat_len, dim=1) | |
return r*feature + b | |