ITO-Master / app.py
jhtonyKoo's picture
modify app
df67096
raw
history blame
10.4 kB
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import yaml
from inference import MasteringStyleTransfer
from utils import download_youtube_audio
from config import args
import pyloudnorm as pyln
import tempfile
import os
import pandas as pd
mastering_transfer = MasteringStyleTransfer(args)
def denormalize_audio(audio, dtype=np.int16):
"""
Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
"""
if dtype == np.int16:
audio = np.clip(audio, -1, 1) # Ensure the input is in the range [-1, 1]
return (audio * 32767).astype(np.int16)
elif dtype == np.float32:
return audio.astype(np.float32)
else:
raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")
def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
# Ensure audio is float32
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
# If audio is mono, reshape to (samples, 1)
if audio.ndim == 1:
audio = audio.reshape(-1, 1)
meter = pyln.Meter(sample_rate) # create BS.1770 meter
loudness = meter.integrated_loudness(audio)
loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness)
return loudness_normalized_audio
def process_youtube_url(url):
try:
audio, sr = download_youtube_audio(url)
return (sr, audio)
except Exception as e:
return None, f"Error processing YouTube URL: {str(e)}"
def process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
if input_youtube_url:
input_audio, error = process_youtube_url(input_youtube_url)
if error:
return None, None, error
if reference_youtube_url:
reference_audio, error = process_youtube_url(reference_youtube_url)
if error:
return None, None, error
if input_audio is None or reference_audio is None:
return None, None, "Both input and reference audio are required."
return process_audio(input_audio, reference_audio)
def process_audio(input_audio, reference_audio):
output_audio, predicted_params, sr = mastering_transfer.process_audio(
input_audio, reference_audio, reference_audio
)
param_output = mastering_transfer.get_param_output_string(predicted_params)
# Convert output_audio to numpy array if it's a tensor
if isinstance(output_audio, torch.Tensor):
output_audio = output_audio.cpu().numpy()
if output_audio.ndim == 1:
output_audio = output_audio.reshape(-1, 1)
elif output_audio.ndim > 2:
output_audio = output_audio.squeeze()
# Ensure the audio is in the correct shape (samples, channels)
if output_audio.shape[1] > output_audio.shape[0]:
output_audio = output_audio.transpose(1,0)
print(output_audio.shape)
print(f"sr: {sr}")
# Normalize output audio
output_audio = loudness_normalize(output_audio, sr)
# Denormalize the audio to int16
output_audio = denormalize_audio(output_audio, dtype=np.int16)
return (sr, output_audio), param_output
def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
if ito_reference_audio is None:
ito_reference_audio = reference_audio
af_weights = [float(w.strip()) for w in af_weights.split(',')]
ito_config = {
'optimizer': optimizer,
'learning_rate': learning_rate,
'num_steps': num_steps,
'af_weights': af_weights,
'sample_rate': args.sample_rate
}
input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate)
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
ito_log = ""
loss_values = []
all_results = []
for log_entry, current_output, current_params, step, loss in mastering_transfer.inference_time_optimization(
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
):
ito_log += log_entry
ito_param_output = mastering_transfer.get_param_output_string(current_params)
loss_values.append({"step": int(step), "loss": loss})
# Convert current_output to numpy array if it's a tensor
if isinstance(current_output, torch.Tensor):
current_output = current_output.cpu().numpy()
if current_output.ndim == 1:
current_output = current_output.reshape(-1, 1)
elif current_output.ndim > 2:
current_output = current_output.squeeze()
# Ensure the audio is in the correct shape (samples, channels)
if current_output.shape[1] > current_output.shape[0]:
current_output = current_output.transpose(1,0)
# Loudness normalize output audio
current_output = loudness_normalize(current_output, args.sample_rate)
# Denormalize the audio to int16
current_output = denormalize_audio(current_output, dtype=np.int16)
all_results.append({
'step': step,
'audio': current_output,
'params': ito_param_output,
'log': log_entry,
'loss': loss
})
yield (args.sample_rate, current_output), ito_param_output, step, ito_log, pd.DataFrame(loss_values), all_results
def update_ito_output(all_results, selected_step):
print(all_results)
print(selected_step)
selected_result = all_results[selected_step - 1]
return (args.sample_rate, selected_result['audio']), selected_result['params'], selected_result['log']
""" APP display """
with gr.Blocks() as demo:
gr.Markdown("# ITO-Master: Inference Time Optimization for Mastering Style Transfer")
gr.Markdown("# Step 1: Mastering Style Transfer")
with gr.Tab("Upload Audio"):
with gr.Row():
input_audio = gr.Audio(label="Input Audio")
reference_audio = gr.Audio(label="Reference Audio")
process_button = gr.Button("Process Mastering Style Transfer")
with gr.Row():
output_audio = gr.Audio(label="Output Audio", type='numpy')
param_output = gr.Textbox(label="Predicted Parameters", lines=5)
process_button.click(
process_audio,
inputs=[input_audio, reference_audio],
outputs=[output_audio, param_output]
)
with gr.Tab("YouTube Audio"):
with gr.Row():
input_youtube_url = gr.Textbox(label="Input YouTube URL")
reference_youtube_url = gr.Textbox(label="Reference YouTube URL")
with gr.Row():
input_audio_yt = gr.Audio(label="Input Audio (Do not put when using YouTube URL)")
reference_audio_yt = gr.Audio(label="Reference Audio (Do not put when using YouTube URL)")
process_button_yt = gr.Button("Process Mastering Style Transfer")
with gr.Row():
output_audio_yt = gr.Audio(label="Output Audio", type='numpy')
param_output_yt = gr.Textbox(label="Predicted Parameters", lines=5)
error_message_yt = gr.Textbox(label="Error Message", visible=False)
def process_and_handle_errors(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
result = process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url)
if len(result) == 3 and isinstance(result[2], str): # Error occurred
return None, None, gr.update(visible=True, value=result[2])
return result[0], result[1], gr.update(visible=False, value="")
process_button_yt.click(
process_and_handle_errors,
inputs=[input_audio_yt, input_youtube_url, reference_audio_yt, reference_youtube_url],
outputs=[output_audio_yt, param_output_yt, error_message_yt]
)
gr.Markdown("## Step 2: Inference Time Optimization (ITO)")
with gr.Row():
ito_reference_audio = gr.Audio(label="ITO Reference Audio (optional)")
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps")
optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
af_weights = gr.Textbox(label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1")
ito_button = gr.Button("Perform ITO")
with gr.Row():
with gr.Column():
ito_output_audio = gr.Audio(label="ITO Output Audio")
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15)
ito_step_slider = gr.Slider(minimum=1, maximum=100, step=1, label="ITO Step", interactive=True)
with gr.Column():
ito_loss_plot = gr.LinePlot(
x="step",
y="loss",
title="ITO Loss Curve",
x_title="Step",
y_title="Loss",
height=300,
width=600,
)
ito_log = gr.Textbox(label="ITO Log", lines=10)
all_results = gr.State([])
min_loss_step = gr.State(0)
def on_ito_complete(results, min_step, loss_df):
all_results.value = results
min_loss_step.value = min_step
return loss_df, gr.update(maximum=len(results), value=min_step+1)
ito_button.click(
perform_ito,
inputs=[input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights],
outputs=[ito_output_audio, ito_param_output, ito_step_slider, ito_log, ito_loss_plot, all_results]
).then(
update_ito_output,
inputs=[all_results, ito_step_slider],
outputs=[ito_output_audio, ito_param_output, ito_log]
)
ito_step_slider.change(
update_ito_output,
inputs=[all_results, ito_step_slider],
outputs=[ito_output_audio, ito_param_output, ito_log]
)
demo.launch()