ITO-Master / inference.py
jhtonyKoo's picture
modify fx norm
fe2ddc5
raw
history blame
14 kB
import torch
import soundfile as sf
import numpy as np
import argparse
import os
import yaml
import julius
import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.dirname(currentdir))
from networks import Dasp_Mastering_Style_Transfer, Effects_Encoder
from modules.loss import AudioFeatureLoss, Loss
from modules.data_normalization import Audio_Effects_Normalizer
def convert_audio(wav: torch.Tensor, from_rate: float,
to_rate: float, to_channels: int) -> torch.Tensor:
"""Convert audio to new sample rate and number of audio channels.
"""
wav = julius.resample_frac(wav, int(from_rate), int(to_rate))
wav = convert_audio_channels(wav, to_channels)
return wav
class MasteringStyleTransfer:
def __init__(self, args):
self.args = args
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load models
self.effects_encoder = self.load_effects_encoder()
self.mastering_converter = self.load_mastering_converter()
self.fx_normalizer = Audio_Effects_Normalizer(precomputed_feature_path=args.fx_norm_feature_path, \
STEMS=['mixture'], \
EFFECTS=['eq', 'imager', 'loudness'])
def load_effects_encoder(self):
effects_encoder = Effects_Encoder(self.args.cfg_enc)
reload_weights(effects_encoder, self.args.encoder_path, self.device)
effects_encoder.to(self.device)
effects_encoder.eval()
return effects_encoder
def load_mastering_converter(self):
mastering_converter = Dasp_Mastering_Style_Transfer(num_features=2048,
sample_rate=self.args.sample_rate,
tgt_fx_names=['eq', 'distortion', 'multiband_comp', 'gain', 'imager', 'limiter'],
model_type='tcn',
config=self.args.cfg_converter,
batch_size=1)
reload_weights(mastering_converter, self.args.model_path, self.device)
mastering_converter.to(self.device)
mastering_converter.eval()
return mastering_converter
def get_reference_embedding(self, reference_tensor):
with torch.no_grad():
reference_feature = self.effects_encoder(reference_tensor)
return reference_feature
def mastering_style_transfer(self, input_tensor, reference_feature):
with torch.no_grad():
output_audio = self.mastering_converter(input_tensor, reference_feature)
predicted_params = self.mastering_converter.get_last_predicted_params()
return output_audio, predicted_params
def inference_time_optimization(self, input_tensor, reference_tensor, ito_config, initial_reference_feature):
fit_embedding = torch.nn.Parameter(initial_reference_feature)
optimizer = getattr(torch.optim, ito_config['optimizer'])([fit_embedding], lr=ito_config['learning_rate'])
af_loss = AudioFeatureLoss(
weights=ito_config['af_weights'],
sample_rate=ito_config['sample_rate'],
stem_separation=False,
use_clap=False
)
min_loss = float('inf')
min_loss_step = 0
all_results = []
for step in range(ito_config['num_steps']):
optimizer.zero_grad()
output_audio = self.mastering_converter(input_tensor, fit_embedding)
current_params = self.mastering_converter.get_last_predicted_params()
losses = af_loss(output_audio, reference_tensor)
total_loss = sum(losses.values())
if total_loss < min_loss:
min_loss = total_loss.item()
min_loss_step = step
# Log top 5 parameter differences
if step == 0:
initial_params = current_params
top_5_diff = self.get_top_n_diff_string(initial_params, current_params, top_n=5)
log_entry = f"Step {step + 1}\n Loss: {total_loss.item():.4f}\n{top_5_diff}\n"
all_results.append({
'step': step + 1,
'loss': total_loss.item(),
'audio': output_audio.detach().cpu().numpy(),
'params': current_params,
'log': log_entry
})
total_loss.backward()
optimizer.step()
return all_results, min_loss_step
def preprocess_audio(self, audio, target_sample_rate=44100, normalize=False):
sample_rate, data = audio
# Normalize audio to -1 to 1 range
if data.dtype == np.int16:
data = data.astype(np.float32) / 32768.0
elif data.dtype == np.float32:
data = np.clip(data, -1.0, 1.0)
else:
raise ValueError(f"Unsupported audio data type: {data.dtype}")
# Ensure stereo channels
if data.ndim == 1:
data = np.stack([data, data])
elif data.ndim == 2:
if data.shape[0] == 2:
pass # Already in correct shape
elif data.shape[1] == 2:
data = data.T
else:
data = np.stack([data[:, 0], data[:, 0]]) # Duplicate mono channel
else:
raise ValueError(f"Unsupported audio shape: {data.shape}")
# Resample if necessary
if sample_rate != target_sample_rate:
data = julius.resample_frac(torch.from_numpy(data), sample_rate, target_sample_rate).numpy()
# Apply fx normalization for input audio during mastering style transfer
if normalize:
data = self.fx_normalizer.normalize_audio(data, 'mixture')
# Convert to torch tensor
data_tensor = torch.FloatTensor(data).unsqueeze(0)
return data_tensor.to(self.device)
def process_audio(self, input_audio, reference_audio):
print(f"input: {input_audio}")
print(f"reference: {reference_audio}")
input_tensor = self.preprocess_audio(input_audio, self.args.sample_rate, normalize=True)
reference_tensor = self.preprocess_audio(reference_audio, self.args.sample_rate)
print(f"input_tensor: {input_tensor.shape}")
print(f"reference_tensor: {reference_tensor.shape}")
reference_feature = self.get_reference_embedding(reference_tensor)
output_audio, predicted_params = self.mastering_style_transfer(input_tensor, reference_feature)
return output_audio, predicted_params, self.args.sample_rate, input_tensor
def get_param_output_string(self, params):
if params is None:
return "No parameters available"
param_mapper = {
'EQ': {
'low_shelf_gain_db': ('Low Shelf Gain', 'dB', -20, 20),
'low_shelf_cutoff_freq': ('Low Shelf Cutoff', 'Hz', 20, 2000),
'low_shelf_q_factor': ('Low Shelf Q', '', 0.1, 5.0),
'band0_gain_db': ('Low-Mid Band Gain', 'dB', -20, 20),
'band0_cutoff_freq': ('Low-Mid Band Frequency', 'Hz', 80, 2000),
'band0_q_factor': ('Low-Mid Band Q', '', 0.1, 5.0),
'band1_gain_db': ('Mid Band Gain', 'dB', -20, 20),
'band1_cutoff_freq': ('Mid Band Frequency', 'Hz', 2000, 8000),
'band1_q_factor': ('Mid Band Q', '', 0.1, 5.0),
'band2_gain_db': ('High-Mid Band Gain', 'dB', -20, 20),
'band2_cutoff_freq': ('High-Mid Band Frequency', 'Hz', 8000, 12000),
'band2_q_factor': ('High-Mid Band Q', '', 0.1, 5.0),
'band3_gain_db': ('High Band Gain', 'dB', -20, 20),
'band3_cutoff_freq': ('High Band Frequency', 'Hz', 12000, 20000), # Assuming sample_rate is 44100
'band3_q_factor': ('High Band Q', '', 0.1, 5.0),
'high_shelf_gain_db': ('High Shelf Gain', 'dB', -20, 20),
'high_shelf_cutoff_freq': ('High Shelf Cutoff', 'Hz', 4000, 20000), # Assuming sample_rate is 44100
'high_shelf_q_factor': ('High Shelf Q', '', 0.1, 5.0),
},
'DISTORTION': {
'drive_db': ('Drive', 'dB', 0, 8),
'parallel_weight_factor': ('Dry/Wet Mix', '%', 0, 100),
},
'MULTIBAND_COMP': {
'low_cutoff': ('Low/Mid Crossover', 'Hz', 20, 1000),
'high_cutoff': ('Mid/High Crossover', 'Hz', 1000, 20000),
'parallel_weight_factor': ('Dry/Wet Mix', '%', 0, 100),
'low_shelf_comp_thresh': ('Low Band Comp Threshold', 'dB', -60, 0),
'low_shelf_comp_ratio': ('Low Band Comp Ratio', ':1', 1, 20),
'low_shelf_exp_thresh': ('Low Band Exp Threshold', 'dB', -60, 0),
'low_shelf_exp_ratio': ('Low Band Exp Ratio', ':1', 1, 20),
'low_shelf_at': ('Low Band Attack Time', 'ms', 5, 100),
'low_shelf_rt': ('Low Band Release Time', 'ms', 5, 100),
'mid_band_comp_thresh': ('Mid Band Comp Threshold', 'dB', -60, 0),
'mid_band_comp_ratio': ('Mid Band Comp Ratio', ':1', 1, 20),
'mid_band_exp_thresh': ('Mid Band Exp Threshold', 'dB', -60, 0),
'mid_band_exp_ratio': ('Mid Band Exp Ratio', ':1', 1, 20),
'mid_band_at': ('Mid Band Attack Time', 'ms', 5, 100),
'mid_band_rt': ('Mid Band Release Time', 'ms', 5, 100),
'high_shelf_comp_thresh': ('High Band Comp Threshold', 'dB', -60, 0),
'high_shelf_comp_ratio': ('High Band Comp Ratio', ':1', 1, 20),
'high_shelf_exp_thresh': ('High Band Exp Threshold', 'dB', -60, 0),
'high_shelf_exp_ratio': ('High Band Exp Ratio', ':1', 1, 20),
'high_shelf_at': ('High Band Attack Time', 'ms', 5, 100),
'high_shelf_rt': ('High Band Release Time', 'ms', 5, 100),
},
'GAIN': {
'gain_db': ('Output Gain', 'dB', -24, 24),
},
'IMAGER': {
'width': ('Stereo Width', '', 0, 1),
},
'LIMITER': {
'threshold': ('Threshold', 'dB', -60, 0),
'at': ('Attack Time', 'ms', 5, 100),
'rt': ('Release Time', 'ms', 5, 100),
},
}
output = []
for fx_name, fx_params in params.items():
output.append(f"{fx_name}:")
if isinstance(fx_params, dict):
for param_name, param_value in fx_params.items():
if isinstance(param_value, torch.Tensor):
param_value = param_value.item()
if fx_name in param_mapper and param_name in param_mapper[fx_name]:
friendly_name, unit, min_val, max_val = param_mapper[fx_name][param_name]
if fx_name == 'IMAGER' and param_name == 'width':
# Convert width to a more intuitive scale
width_percentage = param_value * 200
output.append(f" {friendly_name}: {width_percentage:.2f}% (Range: 0-200%)")
else:
output.append(f" {friendly_name}: {param_value:.2f} {unit} (Range: {min_val}-{max_val})")
else:
output.append(f" {param_name}: {param_value:.2f}")
else:
if fx_name == 'IMAGER':
width_percentage = fx_params.item() * 200
output.append(f" Stereo Width: {width_percentage:.2f}% (Range: 0-200%)")
else:
output.append(f" {fx_params.item():.2f}")
return "\n".join(output)
def get_top_n_diff_string(self, initial_params, ito_params, top_n=5):
if initial_params is None or ito_params is None:
return "Cannot compare parameters"
all_diffs = []
for fx_name in initial_params.keys():
if isinstance(initial_params[fx_name], dict):
for param_name in initial_params[fx_name].keys():
initial_value = initial_params[fx_name][param_name]
ito_value = ito_params[fx_name][param_name]
param_range = self.mastering_converter.fx_processors[fx_name].param_ranges[param_name]
normalized_diff = abs((ito_value - initial_value) / (param_range[1] - param_range[0]))
all_diffs.append((fx_name, param_name, initial_value.item(), ito_value.item(), normalized_diff.item()))
else:
initial_value = initial_params[fx_name]
ito_value = ito_params[fx_name]
normalized_diff = abs(ito_value - initial_value)
all_diffs.append((fx_name, 'width', initial_value.item(), ito_value.item(), normalized_diff.item()))
top_diffs = sorted(all_diffs, key=lambda x: x[4], reverse=True)[:top_n]
output = [f" Top {top_n} parameter differences (initial / ITO / normalized diff):"]
for fx_name, param_name, initial_value, ito_value, normalized_diff in top_diffs:
output.append(f" {fx_name.upper()} - {param_name}: {initial_value:.2f} / {ito_value:.2f} / {normalized_diff:.2f}")
return "\n".join(output)
def reload_weights(model, ckpt_path, device):
checkpoint = torch.load(ckpt_path, map_location=device)
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint["model"].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict, strict=False)