ITO-Master / inference.py
jhtonyKoo's picture
modify loss
0e8269e
import torch
import soundfile as sf
import numpy as np
import argparse
import os
import yaml
import julius
import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.dirname(currentdir))
from networks import Dasp_Mastering_Style_Transfer, Effects_Encoder
from modules.loss import AudioFeatureLoss, Loss, CLAPFeatureLoss
from modules.data_normalization import Audio_Effects_Normalizer
def convert_audio(wav: torch.Tensor, from_rate: float,
to_rate: float, to_channels: int) -> torch.Tensor:
"""Convert audio to new sample rate and number of audio channels.
"""
wav = julius.resample_frac(wav, int(from_rate), int(to_rate))
wav = convert_audio_channels(wav, to_channels)
return wav
class MasteringStyleTransfer:
def __init__(self, args):
self.args = args
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load models
self.effects_encoder = self.load_effects_encoder()
self.mastering_converter = self.load_mastering_converter()
self.fx_normalizer = Audio_Effects_Normalizer(precomputed_feature_path=args.fx_norm_feature_path, \
STEMS=['mixture'], \
EFFECTS=['eq', 'imager', 'loudness'])
# Loss functions
self.clap_loss = CLAPFeatureLoss()
def load_effects_encoder(self):
effects_encoder = Effects_Encoder(self.args.cfg_enc)
reload_weights(effects_encoder, self.args.encoder_path, self.device)
effects_encoder.to(self.device)
effects_encoder.eval()
return effects_encoder
def load_mastering_converter(self):
mastering_converter = Dasp_Mastering_Style_Transfer(num_features=2048,
sample_rate=self.args.sample_rate,
tgt_fx_names=['eq', 'distortion', 'multiband_comp', 'gain', 'imager', 'limiter'],
model_type='tcn',
config=self.args.cfg_converter,
batch_size=1)
reload_weights(mastering_converter, self.args.model_path, self.device)
mastering_converter.to(self.device)
mastering_converter.eval()
return mastering_converter
def get_reference_embedding(self, reference_tensor):
with torch.no_grad():
reference_feature = self.effects_encoder(reference_tensor)
return reference_feature
def mastering_style_transfer(self, input_tensor, reference_feature):
with torch.no_grad():
output_audio = self.mastering_converter(input_tensor, reference_feature)
predicted_params = self.mastering_converter.get_last_predicted_params()
return output_audio, predicted_params
def inference_time_optimization(self, input_tensor, reference_tensor, ito_config, initial_reference_feature):
fit_embedding = torch.nn.Parameter(initial_reference_feature, requires_grad=True)
optimizer = getattr(torch.optim, ito_config['optimizer'])([fit_embedding], lr=ito_config['learning_rate'])
min_loss = float('inf')
min_loss_step = 0
all_results = []
af_loss = AudioFeatureLoss(
weights=ito_config['af_weights'],
sample_rate=ito_config['sample_rate'],
stem_separation=False,
use_clap=False
)
for step in range(ito_config['num_steps']):
optimizer.zero_grad()
output_audio = self.mastering_converter(input_tensor, fit_embedding)
current_params = self.mastering_converter.get_last_predicted_params()
# Compute loss
if ito_config['loss_function'] == 'AudioFeatureLoss':
losses = af_loss(output_audio, reference_tensor)
total_loss = sum(losses.values())
elif ito_config['loss_function'] == 'CLAPFeatureLoss':
if ito_config['clap_target_type'] == 'Audio':
target = reference_tensor
else:
target = ito_config['clap_text_prompt']
total_loss = self.clap_loss(output_audio, target, self.args.sample_rate, distance_fn=ito_config['clap_distance_fn'])
if total_loss < min_loss:
min_loss = total_loss.item()
min_loss_step = step
# Log top 5 parameter differences
if step == 0:
initial_params = current_params
top_5_diff = self.get_top_n_diff_string(initial_params, current_params, top_n=5)
log_entry = f"Step {step + 1}\n Loss: {total_loss.item():.4f}\n{top_5_diff}\n"
all_results.append({
'step': step + 1,
'loss': total_loss.item(),
'audio': output_audio.detach().cpu().numpy(),
'params': current_params,
'log': log_entry
})
total_loss.backward()
optimizer.step()
return all_results, min_loss_step
def preprocess_audio(self, audio, target_sample_rate=44100, normalize=False):
sample_rate, data = audio
# Normalize audio to -1 to 1 range
if data.dtype == np.int16:
data = data.astype(np.float32) / 32768.0
elif data.dtype == np.float32:
data = np.clip(data, -1.0, 1.0)
else:
raise ValueError(f"Unsupported audio data type: {data.dtype}")
# Ensure stereo channels
if data.ndim == 1:
data = np.stack([data, data])
elif data.ndim == 2:
if data.shape[0] == 2:
pass # Already in correct shape
elif data.shape[1] == 2:
data = data.T
else:
data = np.stack([data[:, 0], data[:, 0]]) # Duplicate mono channel
else:
raise ValueError(f"Unsupported audio shape: {data.shape}")
# Resample if necessary
if sample_rate != target_sample_rate:
data = julius.resample_frac(torch.from_numpy(data), sample_rate, target_sample_rate).numpy()
# Apply fx normalization for input audio during mastering style transfer
if normalize:
data = self.fx_normalizer.normalize_audio(data.T, 'mixture').T
# Convert to torch tensor
data_tensor = torch.FloatTensor(data).unsqueeze(0)
return data_tensor.to(self.device)
def process_audio(self, input_audio, reference_audio):
input_tensor = self.preprocess_audio(input_audio, self.args.sample_rate, normalize=True)
reference_tensor = self.preprocess_audio(reference_audio, self.args.sample_rate)
reference_feature = self.get_reference_embedding(reference_tensor)
output_audio, predicted_params = self.mastering_style_transfer(input_tensor, reference_feature)
return output_audio, predicted_params, self.args.sample_rate, input_tensor
def get_param_output_string(self, params):
if params is None:
return "No parameters available"
param_mapper = {
'eq': {
'low_shelf_gain_db': ('Low Shelf Gain', 'dB', -20, 20),
'low_shelf_cutoff_freq': ('Low Shelf Cutoff', 'Hz', 20, 2000),
'low_shelf_q_factor': ('Low Shelf Q', '', 0.1, 5.0),
'band0_gain_db': ('Low-Mid Band Gain', 'dB', -20, 20),
'band0_cutoff_freq': ('Low-Mid Band Frequency', 'Hz', 80, 2000),
'band0_q_factor': ('Low-Mid Band Q', '', 0.1, 5.0),
'band1_gain_db': ('Mid Band Gain', 'dB', -20, 20),
'band1_cutoff_freq': ('Mid Band Frequency', 'Hz', 2000, 8000),
'band1_q_factor': ('Mid Band Q', '', 0.1, 5.0),
'band2_gain_db': ('High-Mid Band Gain', 'dB', -20, 20),
'band2_cutoff_freq': ('High-Mid Band Frequency', 'Hz', 8000, 12000),
'band2_q_factor': ('High-Mid Band Q', '', 0.1, 5.0),
'band3_gain_db': ('High Band Gain', 'dB', -20, 20),
'band3_cutoff_freq': ('High Band Frequency', 'Hz', 12000, 20000),
'band3_q_factor': ('High Band Q', '', 0.1, 5.0),
'high_shelf_gain_db': ('High Shelf Gain', 'dB', -20, 20),
'high_shelf_cutoff_freq': ('High Shelf Cutoff', 'Hz', 4000, 20000),
'high_shelf_q_factor': ('High Shelf Q', '', 0.1, 5.0),
},
'distortion': {
'drive_db': ('Drive', 'dB', 0, 8),
'parallel_weight_factor': ('Dry/Wet Mix', '%', 0, 100),
},
'multiband_comp': {
'low_cutoff': ('Low/Mid Crossover', 'Hz', 20, 1000),
'high_cutoff': ('Mid/High Crossover', 'Hz', 1000, 20000),
'parallel_weight_factor': ('Dry/Wet Mix', '%', 0, 100),
'low_shelf_comp_thresh': ('Low Band Comp Threshold', 'dB', -60, 0),
'low_shelf_comp_ratio': ('Low Band Comp Ratio', ': 1', 1, 20),
'low_shelf_exp_thresh': ('Low Band Exp Threshold', 'dB', -60, 0),
'low_shelf_exp_ratio': ('Low Band Exp Ratio', ': 1', 1, 20),
'low_shelf_at': ('Low Band Attack Time', 'ms', 5, 100),
'low_shelf_rt': ('Low Band Release Time', 'ms', 5, 100),
'mid_band_comp_thresh': ('Mid Band Comp Threshold', 'dB', -60, 0),
'mid_band_comp_ratio': ('Mid Band Comp Ratio', ': 1', 1, 20),
'mid_band_exp_thresh': ('Mid Band Exp Threshold', 'dB', -60, 0),
'mid_band_exp_ratio': ('Mid Band Exp Ratio', ': 1', 0, 1),
'mid_band_at': ('Mid Band Attack Time', 'ms', 5, 100),
'mid_band_rt': ('Mid Band Release Time', 'ms', 5, 100),
'high_shelf_comp_thresh': ('High Band Comp Threshold', 'dB', -60, 0),
'high_shelf_comp_ratio': ('High Band Comp Ratio', ': 1', 1, 20),
'high_shelf_exp_thresh': ('High Band Exp Threshold', 'dB', -60, 0),
'high_shelf_exp_ratio': ('High Band Exp Ratio', ': 1', 1, 20),
'high_shelf_at': ('High Band Attack Time', 'ms', 5, 100),
'high_shelf_rt': ('High Band Release Time', 'ms', 5, 100),
},
'gain': {
'gain_db': ('Output Gain', 'dB', -24, 24),
},
'imager': {
'width': ('Stereo Width', '', 0, 1),
},
'limiter': {
'threshold': ('Threshold', 'dB', -60, 0),
'at': ('Attack Time', 'ms', 5, 100),
'rt': ('Release Time', 'ms', 5, 100),
},
}
output = []
for fx_name, fx_params in params.items():
output.append(f"{fx_name.upper()}:")
if isinstance(fx_params, dict):
for param_name, param_value in fx_params.items():
if isinstance(param_value, torch.Tensor):
param_value = param_value.item()
if fx_name in param_mapper and param_name in param_mapper[fx_name]:
friendly_name, unit, min_val, max_val = param_mapper[fx_name][param_name]
if unit=='%':
param_value = param_value * 100
current_content = f" {friendly_name}: {param_value:.2f} {unit}"
if param_name=='mid_band_exp_ratio':
current_content += f" (Range: {min_val}-{max_val})"
output.append(current_content)
else:
output.append(f" {param_name}: {param_value:.2f}")
else:
# stereo imager
width_percentage = fx_params.item() * 200
output.append(f" Stereo Width: {width_percentage:.2f}% (Range: 0-200%)")
return "\n".join(output)
def get_top_n_diff_string(self, initial_params, ito_params, top_n=5):
if initial_params is None or ito_params is None:
return "Cannot compare parameters"
all_diffs = []
for fx_name in initial_params.keys():
if isinstance(initial_params[fx_name], dict):
for param_name in initial_params[fx_name].keys():
initial_value = initial_params[fx_name][param_name]
ito_value = ito_params[fx_name][param_name]
param_range = self.mastering_converter.fx_processors[fx_name].param_ranges[param_name]
normalized_diff = abs((ito_value - initial_value) / (param_range[1] - param_range[0]))
all_diffs.append((fx_name, param_name, initial_value.item(), ito_value.item(), normalized_diff.item()))
else:
initial_value = initial_params[fx_name]
ito_value = ito_params[fx_name]
normalized_diff = abs(ito_value - initial_value)
all_diffs.append((fx_name, 'width', initial_value.item(), ito_value.item(), normalized_diff.item()))
top_diffs = sorted(all_diffs, key=lambda x: x[4], reverse=True)[:top_n]
output = [f" Top {top_n} parameter differences (initial / ITO / normalized diff):"]
for fx_name, param_name, initial_value, ito_value, normalized_diff in top_diffs:
output.append(f" {fx_name.upper()} - {param_name}: {initial_value:.2f} / {ito_value:.2f} / {normalized_diff:.2f}")
return "\n".join(output)
def reload_weights(model, ckpt_path, device):
checkpoint = torch.load(ckpt_path, map_location=device)
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint["model"].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict, strict=False)