jhtonyKoo commited on
Commit
20161bc
1 Parent(s): acc6615

modify fx norm

Browse files
Files changed (2) hide show
  1. app.py +1 -0
  2. inference.py +1 -5
app.py CHANGED
@@ -87,6 +87,7 @@ def process_audio(input_audio, reference_audio):
87
  output_audio = loudness_normalize(output_audio, sr)
88
  # Denormalize the audio to int16
89
  output_audio = denormalize_audio(output_audio, dtype=np.int16)
 
90
 
91
  return (sr, output_audio), param_output, (sr, normalized_input)
92
 
 
87
  output_audio = loudness_normalize(output_audio, sr)
88
  # Denormalize the audio to int16
89
  output_audio = denormalize_audio(output_audio, dtype=np.int16)
90
+ normalized_input = denormalize_audio(normalized_input, dtype=np.int16)
91
 
92
  return (sr, output_audio), param_output, (sr, normalized_input)
93
 
inference.py CHANGED
@@ -143,9 +143,7 @@ class MasteringStyleTransfer:
143
 
144
  # Apply fx normalization for input audio during mastering style transfer
145
  if normalize:
146
- print(f"before normalization: {data.shape}")
147
  data = self.fx_normalizer.normalize_audio(data.T, 'mixture').T
148
- print(f"after normalization: {data.shape}")
149
 
150
  # Convert to torch tensor
151
  data_tensor = torch.FloatTensor(data).unsqueeze(0)
@@ -153,11 +151,9 @@ class MasteringStyleTransfer:
153
  return data_tensor.to(self.device)
154
 
155
  def process_audio(self, input_audio, reference_audio):
156
- print(f"input: {input_audio}")
157
- print(f"reference: {reference_audio}")
158
  input_tensor = self.preprocess_audio(input_audio, self.args.sample_rate, normalize=True)
159
- print(f"input_tensor: {input_tensor.shape}")
160
  reference_tensor = self.preprocess_audio(reference_audio, self.args.sample_rate)
 
161
  print(f"reference_tensor: {reference_tensor.shape}")
162
 
163
  reference_feature = self.get_reference_embedding(reference_tensor)
 
143
 
144
  # Apply fx normalization for input audio during mastering style transfer
145
  if normalize:
 
146
  data = self.fx_normalizer.normalize_audio(data.T, 'mixture').T
 
147
 
148
  # Convert to torch tensor
149
  data_tensor = torch.FloatTensor(data).unsqueeze(0)
 
151
  return data_tensor.to(self.device)
152
 
153
  def process_audio(self, input_audio, reference_audio):
 
 
154
  input_tensor = self.preprocess_audio(input_audio, self.args.sample_rate, normalize=True)
 
155
  reference_tensor = self.preprocess_audio(reference_audio, self.args.sample_rate)
156
+ print(f"input_tensor: {input_tensor.shape}")
157
  print(f"reference_tensor: {reference_tensor.shape}")
158
 
159
  reference_feature = self.get_reference_embedding(reference_tensor)