Spaces:
Running
Running
update yt_download
Browse files- __pycache__/inference.cpython-311.pyc +0 -0
- __pycache__/utils.cpython-311.pyc +0 -0
- app.py +8 -6
- modules/__pycache__/loss.cpython-311.pyc +0 -0
- utils.py +3 -2
__pycache__/inference.cpython-311.pyc
CHANGED
Binary files a/__pycache__/inference.cpython-311.pyc and b/__pycache__/inference.cpython-311.pyc differ
|
|
__pycache__/utils.cpython-311.pyc
CHANGED
Binary files a/__pycache__/utils.cpython-311.pyc and b/__pycache__/utils.cpython-311.pyc differ
|
|
app.py
CHANGED
@@ -43,7 +43,7 @@ def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
|
|
43 |
def process_youtube_url(url):
|
44 |
try:
|
45 |
audio, sr = download_youtube_audio(url)
|
46 |
-
return (sr, audio)
|
47 |
except Exception as e:
|
48 |
return None, f"Error processing YouTube URL: {str(e)}"
|
49 |
|
@@ -199,21 +199,23 @@ with gr.Blocks() as demo:
|
|
199 |
gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
|
200 |
|
201 |
with gr.Row():
|
202 |
-
|
203 |
-
|
|
|
|
|
204 |
|
205 |
error_message_yt = gr.Textbox(label="Error Message", visible=False)
|
206 |
|
207 |
def process_and_handle_errors(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
|
208 |
result = process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url)
|
209 |
if len(result) == 3 and isinstance(result[2], str): # Error occurred
|
210 |
-
return None, None, gr.update(visible=True, value=result[2])
|
211 |
-
return result[0], result[1], gr.update(visible=False, value="")
|
212 |
|
213 |
process_button_yt.click(
|
214 |
process_and_handle_errors,
|
215 |
inputs=[input_audio_yt, input_youtube_url, reference_audio_yt, reference_youtube_url],
|
216 |
-
outputs=[output_audio_yt, param_output_yt, error_message_yt]
|
217 |
)
|
218 |
|
219 |
gr.Markdown("## Step 2: Inference Time Optimization (ITO)")
|
|
|
43 |
def process_youtube_url(url):
|
44 |
try:
|
45 |
audio, sr = download_youtube_audio(url)
|
46 |
+
return (sr, audio), None
|
47 |
except Exception as e:
|
48 |
return None, f"Error processing YouTube URL: {str(e)}"
|
49 |
|
|
|
199 |
gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
|
200 |
|
201 |
with gr.Row():
|
202 |
+
with gr.Column():
|
203 |
+
output_audio = gr.Audio(label="Output Audio y'", type='numpy')
|
204 |
+
normalized_input = gr.Audio(label="Normalized Source Audio", type='numpy')
|
205 |
+
param_output = gr.Textbox(label="Predicted Parameters", lines=5)
|
206 |
|
207 |
error_message_yt = gr.Textbox(label="Error Message", visible=False)
|
208 |
|
209 |
def process_and_handle_errors(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
|
210 |
result = process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url)
|
211 |
if len(result) == 3 and isinstance(result[2], str): # Error occurred
|
212 |
+
return None, None, None, gr.update(visible=True, value=result[2])
|
213 |
+
return result[0], result[1], result[2], gr.update(visible=False, value="")
|
214 |
|
215 |
process_button_yt.click(
|
216 |
process_and_handle_errors,
|
217 |
inputs=[input_audio_yt, input_youtube_url, reference_audio_yt, reference_youtube_url],
|
218 |
+
outputs=[output_audio_yt, param_output_yt, normalized_input, error_message_yt]
|
219 |
)
|
220 |
|
221 |
gr.Markdown("## Step 2: Inference Time Optimization (ITO)")
|
modules/__pycache__/loss.cpython-311.pyc
CHANGED
Binary files a/modules/__pycache__/loss.cpython-311.pyc and b/modules/__pycache__/loss.cpython-311.pyc differ
|
|
utils.py
CHANGED
@@ -3,10 +3,11 @@ import librosa
|
|
3 |
import numpy as np
|
4 |
|
5 |
def download_youtube_audio(url):
|
6 |
-
yt = YouTube(url, use_po_token=True)
|
|
|
7 |
stream = yt.streams.filter(only_audio=True).first()
|
8 |
filename = stream.download()
|
9 |
audio, sr = librosa.load(filename, sr=44100, mono=False)
|
10 |
if audio.ndim == 1:
|
11 |
audio = np.stack([audio, audio])
|
12 |
-
return audio.T
|
|
|
3 |
import numpy as np
|
4 |
|
5 |
def download_youtube_audio(url):
|
6 |
+
# yt = YouTube(url, use_po_token=True)
|
7 |
+
yt = YouTube(url)
|
8 |
stream = yt.streams.filter(only_audio=True).first()
|
9 |
filename = stream.download()
|
10 |
audio, sr = librosa.load(filename, sr=44100, mono=False)
|
11 |
if audio.ndim == 1:
|
12 |
audio = np.stack([audio, audio])
|
13 |
+
return audio.T, sr
|