Spaces:
Sleeping
Sleeping
modify app
Browse files
app.py
CHANGED
@@ -112,16 +112,19 @@ def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, op
|
|
112 |
|
113 |
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
|
114 |
|
|
|
|
|
|
|
|
|
115 |
ito_log = ""
|
116 |
loss_values = []
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
):
|
121 |
-
ito_log += log_entry
|
122 |
-
ito_param_output = mastering_transfer.get_param_output_string(current_params)
|
123 |
-
loss_values.append({"step": int(step), "loss": loss})
|
124 |
|
|
|
|
|
|
|
125 |
# Convert current_output to numpy array if it's a tensor
|
126 |
if isinstance(current_output, torch.Tensor):
|
127 |
current_output = current_output.cpu().numpy()
|
@@ -139,15 +142,7 @@ def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, op
|
|
139 |
# Denormalize the audio to int16
|
140 |
current_output = denormalize_audio(current_output, dtype=np.int16)
|
141 |
|
142 |
-
|
143 |
-
'step': step,
|
144 |
-
'audio': current_output,
|
145 |
-
'params': ito_param_output,
|
146 |
-
'log': log_entry,
|
147 |
-
'loss': loss
|
148 |
-
})
|
149 |
-
|
150 |
-
yield (args.sample_rate, current_output), ito_param_output, step, ito_log, pd.DataFrame(loss_values), all_results
|
151 |
|
152 |
def update_ito_output(all_results, selected_step):
|
153 |
print(all_results)
|
|
|
112 |
|
113 |
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
|
114 |
|
115 |
+
all_results, min_loss_step = mastering_transfer.inference_time_optimization(
|
116 |
+
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
|
117 |
+
)
|
118 |
+
|
119 |
ito_log = ""
|
120 |
loss_values = []
|
121 |
+
for result in all_results:
|
122 |
+
ito_log += result['log']
|
123 |
+
loss_values.append({"step": result['step'], "loss": result['loss']})
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
current_output = result['audio']
|
126 |
+
ito_param_output = mastering_transfer.get_param_output_string(result['params'])
|
127 |
+
|
128 |
# Convert current_output to numpy array if it's a tensor
|
129 |
if isinstance(current_output, torch.Tensor):
|
130 |
current_output = current_output.cpu().numpy()
|
|
|
142 |
# Denormalize the audio to int16
|
143 |
current_output = denormalize_audio(current_output, dtype=np.int16)
|
144 |
|
145 |
+
yield (args.sample_rate, current_output), ito_param_output, result['step'], ito_log, pd.DataFrame(loss_values), all_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
def update_ito_output(all_results, selected_step):
|
148 |
print(all_results)
|