Spaces:
Running
Running
modify app
Browse files- app.py +56 -36
- inference.py +2 -2
app.py
CHANGED
@@ -16,7 +16,17 @@ def process_audio(input_audio, reference_audio):
|
|
16 |
|
17 |
param_output = mastering_transfer.get_param_output_string(predicted_params)
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
|
22 |
if ito_reference_audio is None:
|
@@ -36,13 +46,24 @@ def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, op
|
|
36 |
|
37 |
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
|
38 |
|
39 |
-
|
|
|
40 |
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
|
41 |
-
)
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
with gr.Blocks() as demo:
|
48 |
gr.Markdown("# Mastering Style Transfer Demo")
|
@@ -64,38 +85,37 @@ with gr.Blocks() as demo:
|
|
64 |
outputs=[output_audio, param_output]
|
65 |
)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
ito_output_audio = gr.Audio(label="ITO Output Audio")
|
80 |
-
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=10)
|
81 |
-
ito_steps_taken = gr.Number(label="ITO Steps Taken")
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
run_ito,
|
95 |
-
inputs=[input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights],
|
96 |
-
outputs=[ito_output_audio, ito_param_output, ito_steps_taken, ito_log]
|
97 |
)
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
demo.launch()
|
100 |
|
101 |
|
|
|
16 |
|
17 |
param_output = mastering_transfer.get_param_output_string(predicted_params)
|
18 |
|
19 |
+
# Convert output_audio to numpy array if it's a tensor
|
20 |
+
if isinstance(output_audio, torch.Tensor):
|
21 |
+
output_audio = output_audio.cpu().numpy()
|
22 |
+
|
23 |
+
# Ensure the audio is in the correct shape (samples, channels)
|
24 |
+
if output_audio.ndim == 1:
|
25 |
+
output_audio = output_audio.reshape(-1, 1)
|
26 |
+
elif output_audio.ndim > 2:
|
27 |
+
output_audio = output_audio.squeeze()
|
28 |
+
|
29 |
+
return (sr, output_audio), param_output
|
30 |
|
31 |
def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
|
32 |
if ito_reference_audio is None:
|
|
|
46 |
|
47 |
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
|
48 |
|
49 |
+
ito_log = ""
|
50 |
+
for log_entry, current_output, current_params, step in mastering_transfer.inference_time_optimization(
|
51 |
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
|
52 |
+
):
|
53 |
+
ito_log += log_entry
|
54 |
+
ito_param_output = mastering_transfer.get_param_output_string(current_params)
|
55 |
+
|
56 |
+
# Convert current_output to numpy array if it's a tensor
|
57 |
+
if isinstance(current_output, torch.Tensor):
|
58 |
+
current_output = current_output.cpu().numpy()
|
59 |
+
|
60 |
+
# Ensure the audio is in the correct shape (samples, channels)
|
61 |
+
if current_output.ndim == 1:
|
62 |
+
current_output = current_output.reshape(-1, 1)
|
63 |
+
elif current_output.ndim > 2:
|
64 |
+
current_output = current_output.squeeze()
|
65 |
+
|
66 |
+
yield (args.sample_rate, current_output), ito_param_output, step, ito_log
|
67 |
|
68 |
with gr.Blocks() as demo:
|
69 |
gr.Markdown("# Mastering Style Transfer Demo")
|
|
|
85 |
outputs=[output_audio, param_output]
|
86 |
)
|
87 |
|
88 |
+
gr.Markdown("## Inference Time Optimization (ITO)")
|
89 |
+
|
90 |
+
with gr.Row():
|
91 |
+
with gr.Column(scale=2):
|
92 |
+
ito_reference_audio = gr.Audio(label="ITO Reference Audio (optional)")
|
93 |
+
num_steps = gr.Slider(minimum=1, maximum=1000, value=100, step=1, label="Number of Steps")
|
94 |
+
optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
|
95 |
+
learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
|
96 |
+
af_weights = gr.Textbox(label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1")
|
97 |
+
|
98 |
+
ito_button = gr.Button("Perform ITO")
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
ito_output_audio = gr.Audio(label="ITO Output Audio")
|
101 |
+
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=10)
|
102 |
+
ito_steps_taken = gr.Number(label="ITO Steps Taken")
|
103 |
+
|
104 |
+
with gr.Column(scale=1):
|
105 |
+
ito_log = gr.Textbox(label="ITO Log", lines=30)
|
106 |
+
|
107 |
+
def run_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
|
108 |
+
af_weights = [float(w.strip()) for w in af_weights.split(',')]
|
109 |
+
return perform_ito(
|
110 |
+
input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights
|
|
|
|
|
|
|
111 |
)
|
112 |
|
113 |
+
ito_button.click(
|
114 |
+
run_ito,
|
115 |
+
inputs=[input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights],
|
116 |
+
outputs=[ito_output_audio, ito_param_output, ito_steps_taken, ito_log]
|
117 |
+
)
|
118 |
+
|
119 |
demo.launch()
|
120 |
|
121 |
|
inference.py
CHANGED
@@ -110,7 +110,7 @@ class MasteringStyleTransfer:
|
|
110 |
initial_params = current_params
|
111 |
top_10_diff = self.get_top_10_diff_string(initial_params, current_params)
|
112 |
log_entry = f"Step {step + 1}, Loss: {total_loss.item():.4f}\n{top_10_diff}\n"
|
113 |
-
|
114 |
|
115 |
if divergence_counter >= 10:
|
116 |
print(f"Optimization stopped early due to divergence at step {step}")
|
@@ -119,7 +119,7 @@ class MasteringStyleTransfer:
|
|
119 |
total_loss.backward()
|
120 |
optimizer.step()
|
121 |
|
122 |
-
return min_loss_output, min_loss_params, min_loss_embedding, min_loss_step + 1
|
123 |
|
124 |
def preprocess_audio(self, audio, target_sample_rate=44100):
|
125 |
sample_rate, data = audio
|
|
|
110 |
initial_params = current_params
|
111 |
top_10_diff = self.get_top_10_diff_string(initial_params, current_params)
|
112 |
log_entry = f"Step {step + 1}, Loss: {total_loss.item():.4f}\n{top_10_diff}\n"
|
113 |
+
yield log_entry, output_audio, current_params, step + 1
|
114 |
|
115 |
if divergence_counter >= 10:
|
116 |
print(f"Optimization stopped early due to divergence at step {step}")
|
|
|
119 |
total_loss.backward()
|
120 |
optimizer.step()
|
121 |
|
122 |
+
return min_loss_output, min_loss_params, min_loss_embedding, min_loss_step + 1
|
123 |
|
124 |
def preprocess_audio(self, audio, target_sample_rate=44100):
|
125 |
sample_rate, data = audio
|