Spaces:
Running
on
A10G
Running
on
A10G
import numpy as np | |
from scipy.spatial.transform import Rotation as R | |
import torch | |
def dot(x, y): | |
if isinstance(x, np.ndarray): | |
return np.sum(x * y, -1, keepdims=True) | |
else: | |
return torch.sum(x * y, -1, keepdim=True) | |
def length(x, eps=1e-20): | |
if isinstance(x, np.ndarray): | |
return np.sqrt(np.maximum(np.sum(x * x, axis=-1, keepdims=True), eps)) | |
else: | |
return torch.sqrt(torch.clamp(dot(x, x), min=eps)) | |
def safe_normalize(x, eps=1e-20): | |
return x / length(x, eps) | |
def look_at(campos, target, opengl=True): | |
# campos: [N, 3], camera/eye position | |
# target: [N, 3], object to look at | |
# return: [N, 3, 3], rotation matrix | |
if not opengl: | |
# camera forward aligns with -z | |
forward_vector = safe_normalize(target - campos) | |
up_vector = np.array([0, 1, 0], dtype=np.float32) | |
right_vector = safe_normalize(np.cross(forward_vector, up_vector)) | |
up_vector = safe_normalize(np.cross(right_vector, forward_vector)) | |
else: | |
# camera forward aligns with +z | |
forward_vector = safe_normalize(campos - target) | |
up_vector = np.array([0, 1, 0], dtype=np.float32) | |
right_vector = safe_normalize(np.cross(up_vector, forward_vector)) | |
up_vector = safe_normalize(np.cross(forward_vector, right_vector)) | |
R = np.stack([right_vector, up_vector, forward_vector], axis=1) | |
return R | |
# elevation & azimuth to pose (cam2world) matrix | |
def orbit_camera(elevation, azimuth, radius=1, is_degree=True, target=None, opengl=True): | |
# radius: scalar | |
# elevation: scalar, in (-90, 90), from +y to -y is (-90, 90) | |
# azimuth: scalar, in (-180, 180), from +z to +x is (0, 90) | |
# return: [4, 4], camera pose matrix | |
if is_degree: | |
elevation = np.deg2rad(elevation) | |
azimuth = np.deg2rad(azimuth) | |
x = radius * np.cos(elevation) * np.sin(azimuth) | |
y = - radius * np.sin(elevation) | |
z = radius * np.cos(elevation) * np.cos(azimuth) | |
if target is None: | |
target = np.zeros([3], dtype=np.float32) | |
campos = np.array([x, y, z]) + target # [3] | |
T = np.eye(4, dtype=np.float32) | |
T[:3, :3] = look_at(campos, target, opengl) | |
T[:3, 3] = campos | |
return T | |
class OrbitCamera: | |
def __init__(self, W, H, r=2, fovy=60, near=0.01, far=100): | |
self.W = W | |
self.H = H | |
self.radius = r # camera distance from center | |
self.fovy = np.deg2rad(fovy) # deg 2 rad | |
self.near = near | |
self.far = far | |
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point | |
self.rot = R.from_matrix(np.eye(3)) | |
self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized! | |
def fovx(self): | |
return 2 * np.arctan(np.tan(self.fovy / 2) * self.W / self.H) | |
def campos(self): | |
return self.pose[:3, 3] | |
# pose (c2w) | |
def pose(self): | |
# first move camera to radius | |
res = np.eye(4, dtype=np.float32) | |
res[2, 3] = self.radius # opengl convention... | |
# rotate | |
rot = np.eye(4, dtype=np.float32) | |
rot[:3, :3] = self.rot.as_matrix() | |
res = rot @ res | |
# translate | |
res[:3, 3] -= self.center | |
return res | |
# view (w2c) | |
def view(self): | |
return np.linalg.inv(self.pose) | |
# projection (perspective) | |
def perspective(self): | |
y = np.tan(self.fovy / 2) | |
aspect = self.W / self.H | |
return np.array( | |
[ | |
[1 / (y * aspect), 0, 0, 0], | |
[0, -1 / y, 0, 0], | |
[ | |
0, | |
0, | |
-(self.far + self.near) / (self.far - self.near), | |
-(2 * self.far * self.near) / (self.far - self.near), | |
], | |
[0, 0, -1, 0], | |
], | |
dtype=np.float32, | |
) | |
# intrinsics | |
def intrinsics(self): | |
focal = self.H / (2 * np.tan(self.fovy / 2)) | |
return np.array([focal, focal, self.W // 2, self.H // 2], dtype=np.float32) | |
def mvp(self): | |
return self.perspective @ np.linalg.inv(self.pose) # [4, 4] | |
def orbit(self, dx, dy): | |
# rotate along camera up/side axis! | |
side = self.rot.as_matrix()[:3, 0] | |
rotvec_x = self.up * np.radians(-0.05 * dx) | |
rotvec_y = side * np.radians(-0.05 * dy) | |
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot | |
def scale(self, delta): | |
self.radius *= 1.1 ** (-delta) | |
def pan(self, dx, dy, dz=0): | |
# pan in camera coordinate system (careful on the sensitivity!) | |
self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([-dx, -dy, dz]) |