File size: 5,485 Bytes
e6d52ea
6aec8ea
 
 
3e99b95
e6d52ea
 
 
0c777e7
 
 
 
 
 
 
 
e5c9659
0c777e7
 
 
 
 
 
 
 
 
 
 
 
f18eeb7
0c777e7
 
24f6a08
0c777e7
 
 
d156568
 
 
 
 
0c777e7
d156568
 
 
 
 
0c777e7
d156568
 
 
 
 
 
 
 
 
0db34bd
0c777e7
e6d52ea
 
537b576
 
 
 
 
0c777e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aec8ea
bacba66
d156568
0c777e7
 
 
 
 
 
 
 
a46ea20
 
 
eda3bd5
 
 
a46ea20
eda3bd5
 
7d6b2a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a46ea20
0c777e7
 
 
e6d52ea
 
a46ea20
f18eeb7
e6d52ea
0c777e7
f18eeb7
 
0c777e7
f18eeb7
 
0c777e7
f18eeb7
 
 
 
0c777e7
 
 
 
 
 
 
 
 
 
 
115f014
710fb48
0c777e7
0db34bd
7d6b2a6
3691805
115f014
710fb48
0c777e7
710fb48
 
 
0c777e7
e6d52ea
7d6b2a6
e6d52ea
0c777e7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
    Developers: 
        1. Lewis Kamau Kimaru
        2. Samuel Kalya Kipsang
    
    Function: chat with pdf documents in different languages
    
"""
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub

from typing import Union

from dotenv import load_dotenv
from PyPDF2 import PdfReader
import streamlit as st
import requests
import json
import os

# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']

# Page configuration
st.set_page_config(page_title="SemaNaPDF", page_icon="📚",)

# Sema Translator
Public_Url = 'https://jikoni-tmodel.hf.space' #endpoint

def translate(userinput, target_lang, source_lang=None):
    if source_lang:
        url = f"{Public_Url}/translate_enter/"
        data = {
            "userinput": userinput,
            "source_lang": source_lang,
            "target_lang": target_lang,
        }
        response = requests.post(url, json=data)
        result = response.json()
        print(type(result))
        source_lange = source_lang
        translation = result['translated_text']
    else:
        url = f"{Public_Url}/translate_detect/"
        data = {
            "userinput": userinput,
            "target_lang": target_lang,
        }
        response = requests.post(url, json=data)
        result = response.json()
        source_lange = result['source_language']
        translation = result['translated_text']
    return source_lange, translation

def get_pdf_text(pdf : Union[str, bytes, bytearray]) -> str:
    reader = PdfReader(pdf)
    pdf_text = ''
    for page in (reader.pages):
        text = page.extract_text()
        if text:
            pdf_text += text
    return text

def get_text_chunks(text:str) ->list:
    text_splitter = CharacterTextSplitter(
        separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks

def get_vectorstore(text_chunks : list) -> FAISS:
    model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
    encode_kwargs = {
        "normalize_embeddings": True
    }  # set True to compute cosine similarity
    embeddings = HuggingFaceBgeEmbeddings(
        model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore

def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
    llm = HuggingFaceHub(
        repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
        task="text-generation",
        model_kwargs={"temperature": 0.5, "max_length": 1048}
    )

    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm, retriever=vectorstore.as_retriever(), memory=memory
    )
    return conversation_chain

st.markdown (""" 
  <style> div.stSpinner > div {
    text-align:center; 
    text-align:center;
    align-items: center;
    justify-content: center;
  } 
  </style>""", unsafe_allow_html=True)

footer = """
    <style>
    .footer {
        position: fixed;
        bottom: 0;
        right: 0;
        background-color: #f8f9fa;
        padding: 10px;
        text-align: right;
        width: 100%;
    }
    </style>
    <div class="footer">
    ©2023 Lewis Kimaru. All rights reserved.
    </div>
    """

def main():
    st.title("SemaNaPDF📚")
    # upload file
    pdf = st.file_uploader("Upload a PDF Document", type="pdf")
    if pdf is not None:
        with st.spinner(""):
            # get pdf text
            raw_text = get_pdf_text(pdf)

            # get the text chunks
            text_chunks = get_text_chunks(raw_text)

            # create vector store
            vectorstore = get_vectorstore(text_chunks)

            # create conversation chain
            st.session_state.conversation = get_conversation_chain(vectorstore)
            st.info("done")
            
    # show user input
    if "messages" not in st.session_state:
        st.session_state.messages = []

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if user_question := st.chat_input("Ask your document anything ......?"):
        with st.chat_message("user"):
            st.markdown(user_question)
            
        user_langd, Queryd = translate(user_question, 'eng_Latn')
        st.session_state.messages.append({"role": "user", "content": user_question})
        response = st.session_state.conversation({"question": Queryd}) #Queryd
        print(response)
        st.session_state.chat_history = response["chat_history"]
        
        output = translate(response['answer'], user_langd, 'eng_Latn')[1] # translated response
        with st.chat_message("assistant"):
            #st.markdown(response['answer'])
            st.markdown(output)
            st.session_state.messages.append({"role": "assistant", "content": response['answer']})

    # Signature
    st.markdown(footer, unsafe_allow_html=True)

if __name__ == '__main__':
    main()