kamau1 commited on
Commit
173eacf
·
verified ·
1 Parent(s): a46ea20

Create semapdf1.4.py

Browse files
Files changed (1) hide show
  1. version/semapdf1.4.py +169 -0
version/semapdf1.4.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ creator: Lewis Kamau Kimaru
3
+ Function: chat with pdf documents in different languages
4
+ best version yet
5
+ """
6
+ from langchain.text_splitter import CharacterTextSplitter
7
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
8
+ from langchain.vectorstores import FAISS
9
+ from langchain.chat_models import ChatOpenAI
10
+ from langchain.memory import ConversationBufferMemory
11
+ from langchain.chains import ConversationalRetrievalChain
12
+ from langchain.llms import HuggingFaceHub
13
+
14
+ from typing import Union
15
+
16
+ from dotenv import load_dotenv
17
+ from PyPDF2 import PdfReader
18
+ import streamlit as st
19
+ import requests
20
+ import json
21
+ import os
22
+
23
+ # set this key as an environment variable
24
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
25
+
26
+ # Page configuration
27
+ st.set_page_config(page_title="SemaNaPDF", page_icon="📚",)
28
+
29
+ # Sema Translator
30
+ Public_Url = 'https://lewiskimaru-helloworld.hf.space' #endpoint
31
+
32
+ def translate(userinput, target_lang, source_lang=None):
33
+ if source_lang:
34
+ url = f"{Public_Url}/translate_enter/"
35
+ data = {
36
+ "userinput": userinput,
37
+ "source_lang": source_lang,
38
+ "target_lang": target_lang,
39
+ }
40
+ response = requests.post(url, json=data)
41
+ result = response.json()
42
+ print(type(result))
43
+ source_lange = source_lang
44
+ translation = result['translated_text']
45
+
46
+ else:
47
+ url = f"{Public_Url}/translate_detect/"
48
+ data = {
49
+ "userinput": userinput,
50
+ "target_lang": target_lang,
51
+ }
52
+
53
+ response = requests.post(url, json=data)
54
+ result = response.json()
55
+ source_lange = result['source_language']
56
+ translation = result['translated_text']
57
+ return source_lange, translation
58
+
59
+ def get_pdf_text(pdf : Union[str, bytes, bytearray]) -> str:
60
+ reader = PdfReader(pdf)
61
+ pdf_text = ''
62
+ for page in (reader.pages):
63
+ text = page.extract_text()
64
+ if text:
65
+ pdf_text += text
66
+ return text
67
+
68
+
69
+ def get_text_chunks(text:str) ->list:
70
+ text_splitter = CharacterTextSplitter(
71
+ separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
72
+ )
73
+ chunks = text_splitter.split_text(text)
74
+ return chunks
75
+
76
+
77
+ def get_vectorstore(text_chunks : list) -> FAISS:
78
+ model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
79
+ encode_kwargs = {
80
+ "normalize_embeddings": True
81
+ } # set True to compute cosine similarity
82
+ embeddings = HuggingFaceBgeEmbeddings(
83
+ model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
84
+ )
85
+ vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
86
+ return vectorstore
87
+
88
+
89
+ def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
90
+ llm = HuggingFaceHub(
91
+ repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
92
+ #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
93
+ model_kwargs={"temperature": 0.5, "max_length": 1048},
94
+ )
95
+
96
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
97
+ conversation_chain = ConversationalRetrievalChain.from_llm(
98
+ llm=llm, retriever=vectorstore.as_retriever(), memory=memory
99
+ )
100
+ return conversation_chain
101
+
102
+
103
+ st.markdown ("""
104
+ <style> div.stSpinner > div {
105
+ text-align:center;
106
+ text-align:center;
107
+ align-items: center;
108
+ justify-content: center;
109
+ }
110
+ </style>""", unsafe_allow_html=True)
111
+
112
+
113
+
114
+ def main():
115
+ st.title("SemaNaPDF📚")
116
+ # upload file
117
+ pdf = st.file_uploader("Upload a PDF Document", type="pdf")
118
+ if pdf is not None:
119
+ with st.spinner(""):
120
+ # get pdf text
121
+ raw_text = get_pdf_text(pdf)
122
+
123
+ # get the text chunks
124
+ text_chunks = get_text_chunks(raw_text)
125
+
126
+ # create vector store
127
+ vectorstore = get_vectorstore(text_chunks)
128
+
129
+ # create conversation chain
130
+ st.session_state.conversation = get_conversation_chain(vectorstore)
131
+ st.info("done")
132
+
133
+ #user_question = st.text_input("chat with your pdf ...")
134
+ # show user input
135
+ if "messages" not in st.session_state:
136
+ st.session_state.messages = []
137
+
138
+ for message in st.session_state.messages:
139
+ with st.chat_message(message["role"]):
140
+ st.markdown(message["content"])
141
+
142
+ if user_question := st.chat_input("Ask your document anything ......?"):
143
+ with st.chat_message("user"):
144
+ st.markdown(user_question)
145
+
146
+ user_langd, Queryd = translate(user_question, 'eng_Latn')
147
+ st.session_state.messages.append({"role": "user", "content": user_question})
148
+ response = st.session_state.conversation({"question": Queryd}) #Queryd
149
+ st.session_state.chat_history = response["chat_history"]
150
+
151
+ output = translate(response['answer'], user_langd, 'eng_Latn')[1] # translated response
152
+ with st.chat_message("assistant"):
153
+ #st.markdown(response['answer'])
154
+ st.markdown(output)
155
+ st.session_state.messages.append({"role": "assistant", "content": response['answer']})
156
+
157
+ # Signature
158
+ st.markdown(
159
+ """
160
+ <div style="position: fixed; bottom: 0; right: 0; padding: 10px;">
161
+ <a href="https://kamaukimaru.vercel.app" target="_blank" style="font-size: 12px; color: #269129; text-decoration: none;">©2023 Lewis Kimaru. All rights reserved.</a>
162
+ </div>
163
+ """,
164
+ unsafe_allow_html=True
165
+ )
166
+
167
+
168
+ if __name__ == '__main__':
169
+ main()