kamau1 commited on
Commit
f7e82b9
·
verified ·
1 Parent(s): 2397ad2

Create semapdf1.1.py

Browse files
Files changed (1) hide show
  1. version/semapdf1.1.py +156 -0
version/semapdf1.1.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.text_splitter import CharacterTextSplitter
2
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
3
+ from langchain.vectorstores import FAISS
4
+ from langchain.chat_models import ChatOpenAI
5
+ from langchain.memory import ConversationBufferMemory
6
+ from langchain.chains import ConversationalRetrievalChain
7
+ from langchain.llms import HuggingFaceHub
8
+
9
+ from htmlTemplates import css, bot_template, user_template
10
+
11
+ from dotenv import load_dotenv
12
+ from PyPDF2 import PdfReader
13
+ import streamlit as st
14
+ import requests
15
+ import json
16
+ import os
17
+
18
+ # set this key as an environment variable
19
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
20
+
21
+ # setup Mistral-7B for this question answering
22
+ #hf_token = os.environ['read'] # huggingface verification
23
+
24
+ # Sema Translator
25
+ #Public_Url = os.environ["sema_url"] #endpoint
26
+
27
+ def translate(userinput, target_lang, source_lang=None):
28
+ if source_lang:
29
+ url = "Public_Url/translate_enter/"
30
+ data = {
31
+ "userinput": userinput,
32
+ "source_lang": source_lang,
33
+ "target_lang": target_lang,
34
+ }
35
+ response = requests.post(url, json=data)
36
+ result = response.json()
37
+ print(type(result))
38
+ source_lange = source_lang
39
+ translation = result['translated_text']
40
+ return source_lange, translation
41
+ else:
42
+ url = "Public_Url/translate_detect/"
43
+ data = {
44
+ "userinput": userinput,
45
+ "target_lang": target_lang,
46
+ }
47
+
48
+ response = requests.post(url, json=data)
49
+ result = response.json()
50
+ source_lange = result['source_language']
51
+ translation = result['translated_text']
52
+ return source_lange, translation
53
+
54
+
55
+ def get_pdf_text(pdf_docs : list) -> str:
56
+ text = ""
57
+ for pdf in pdf_docs:
58
+ pdf_reader = PdfReader(pdf)
59
+ for page in pdf_reader.pages:
60
+ text += page.extract_text()
61
+ return text
62
+
63
+
64
+ def get_text_chunks(text:str) ->list:
65
+ text_splitter = CharacterTextSplitter(
66
+ separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
67
+ )
68
+ chunks = text_splitter.split_text(text)
69
+ return chunks
70
+
71
+
72
+ def get_vectorstore(text_chunks : list) -> FAISS:
73
+ model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
74
+ encode_kwargs = {
75
+ "normalize_embeddings": True
76
+ } # set True to compute cosine similarity
77
+ embeddings = HuggingFaceBgeEmbeddings(
78
+ model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
79
+ )
80
+ vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
81
+ return vectorstore
82
+
83
+
84
+ def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
85
+ llm = HuggingFaceHub(
86
+ repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
87
+ #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
88
+ model_kwargs={"temperature": 0.5, "max_length": 1048},
89
+ )
90
+
91
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
92
+ conversation_chain = ConversationalRetrievalChain.from_llm(
93
+ llm=llm, retriever=vectorstore.as_retriever(), memory=memory
94
+ )
95
+ return conversation_chain
96
+
97
+
98
+ def handle_userinput(user_question:str):
99
+ response = st.session_state.conversation({"question": user_question})
100
+ st.session_state.chat_history = response["chat_history"]
101
+
102
+ for i, message in enumerate(st.session_state.chat_history):
103
+ if i % 2 == 0:
104
+ st.write("😎Usuer: " + message.content)
105
+ else:
106
+ st.write("🤖 ChatBot: " + message.content)
107
+
108
+
109
+ def main():
110
+ st.set_page_config(
111
+ page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
112
+ page_icon=":books:",
113
+ )
114
+
115
+ st.markdown("# Chat with a Bot")
116
+ st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾")
117
+
118
+ st.write(css, unsafe_allow_html=True)
119
+
120
+
121
+ if "conversation" not in st.session_state:
122
+ st.session_state.conversation = None
123
+ if "chat_history" not in st.session_state:
124
+ st.session_state.chat_history = None
125
+
126
+
127
+ st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
128
+ user_question = st.text_input("Ask a question about your documents:")
129
+ if user_question:
130
+ handle_userinput(user_question)
131
+
132
+
133
+ with st.sidebar:
134
+ st.subheader("Your documents")
135
+ pdf_docs = st.file_uploader(
136
+ "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
137
+ )
138
+ if st.button("Process"):
139
+ with st.spinner("Processing"):
140
+ # get pdf text
141
+ raw_text = get_pdf_text(pdf_docs)
142
+
143
+ # get the text chunks
144
+ text_chunks = get_text_chunks(raw_text)
145
+
146
+ # create vector store
147
+ vectorstore = get_vectorstore(text_chunks)
148
+
149
+ # create conversation chain
150
+ st.session_state.conversation = get_conversation_chain(vectorstore)
151
+
152
+ st.info("DONE")
153
+
154
+
155
+ if __name__ == "__main__":
156
+ main()