Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.system('pip install pip --upgrade')
|
4 |
+
os.system('pip install -q git+https://github.com/huggingface/transformers.git')
|
5 |
+
|
6 |
+
|
7 |
+
os.system("pip install pyyaml==5.1")
|
8 |
+
# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
|
9 |
+
os.system(
|
10 |
+
"pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html"
|
11 |
+
)
|
12 |
+
|
13 |
+
# install detectron2 that matches pytorch 1.8
|
14 |
+
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
|
15 |
+
os.system(
|
16 |
+
"pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html"
|
17 |
+
)
|
18 |
+
|
19 |
+
## install PyTesseract
|
20 |
+
os.system("pip install -q pytesseract")
|
21 |
+
|
22 |
+
import gradio as gr
|
23 |
+
import numpy as np
|
24 |
+
from transformers import AutoModelForTokenClassification
|
25 |
+
from datasets.features import ClassLabel
|
26 |
+
from transformers import AutoProcessor
|
27 |
+
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
|
28 |
+
import torch
|
29 |
+
from datasets import load_metric
|
30 |
+
from transformers import LayoutLMv3ForTokenClassification
|
31 |
+
from transformers.data.data_collator import default_data_collator
|
32 |
+
|
33 |
+
|
34 |
+
from transformers import AutoModelForTokenClassification
|
35 |
+
from datasets import load_dataset
|
36 |
+
from PIL import Image, ImageDraw, ImageFont
|
37 |
+
|
38 |
+
|
39 |
+
processor = AutoProcessor.from_pretrained("jinhybr/OCR-LayoutLMv3-Invoice", apply_ocr=True)
|
40 |
+
model = AutoModelForTokenClassification.from_pretrained("jinhybr/OCR-LayoutLMv3-Invoice")
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
# load image example
|
45 |
+
dataset = load_dataset("jinhybr/WildReceipt", split="test")
|
46 |
+
Image.open(dataset[18]["image_path"]).convert("RGB").save("example1.png")
|
47 |
+
Image.open(dataset[19]["image_path"]).convert("RGB").save("example2.png")
|
48 |
+
Image.open(dataset[25]["image_path"]).convert("RGB").save("example3.png")
|
49 |
+
# define id2label, label2color
|
50 |
+
labels = dataset.features['ner_tags'].feature.names
|
51 |
+
id2label = {v: k for v, k in enumerate(labels)}
|
52 |
+
label2color = {
|
53 |
+
"Date_key": 'red',
|
54 |
+
"Date_value": 'green',
|
55 |
+
"Ignore": 'orange',
|
56 |
+
"Others": 'orange',
|
57 |
+
"Prod_item_key": 'red',
|
58 |
+
"Prod_item_value": 'green',
|
59 |
+
"Prod_price_key": 'red',
|
60 |
+
"Prod_price_value": 'green',
|
61 |
+
"Prod_quantity_key": 'red',
|
62 |
+
"Prod_quantity_value": 'green',
|
63 |
+
"Store_addr_key": 'red',
|
64 |
+
"Store_addr_value": 'green',
|
65 |
+
"Store_name_key": 'red',
|
66 |
+
"Store_name_value": 'green',
|
67 |
+
"Subtotal_key": 'red',
|
68 |
+
"Subtotal_value": 'green',
|
69 |
+
"Tax_key": 'red',
|
70 |
+
"Tax_value": 'green',
|
71 |
+
"Tel_key": 'red',
|
72 |
+
"Tel_value": 'green',
|
73 |
+
"Time_key": 'red',
|
74 |
+
"Time_value": 'green',
|
75 |
+
"Tips_key": 'red',
|
76 |
+
"Tips_value": 'green',
|
77 |
+
"Total_key": 'red',
|
78 |
+
"Total_value": 'blue'
|
79 |
+
}
|
80 |
+
|
81 |
+
def unnormalize_box(bbox, width, height):
|
82 |
+
return [
|
83 |
+
width * (bbox[0] / 1000),
|
84 |
+
height * (bbox[1] / 1000),
|
85 |
+
width * (bbox[2] / 1000),
|
86 |
+
height * (bbox[3] / 1000),
|
87 |
+
]
|
88 |
+
|
89 |
+
|
90 |
+
def iob_to_label(label):
|
91 |
+
return label
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def process_image(image):
|
96 |
+
|
97 |
+
print(type(image))
|
98 |
+
width, height = image.size
|
99 |
+
|
100 |
+
# encode
|
101 |
+
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
102 |
+
offset_mapping = encoding.pop('offset_mapping')
|
103 |
+
|
104 |
+
# forward pass
|
105 |
+
outputs = model(**encoding)
|
106 |
+
|
107 |
+
# get predictions
|
108 |
+
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
109 |
+
token_boxes = encoding.bbox.squeeze().tolist()
|
110 |
+
|
111 |
+
# only keep non-subword predictions
|
112 |
+
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
113 |
+
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
114 |
+
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
115 |
+
|
116 |
+
# draw predictions over the image
|
117 |
+
draw = ImageDraw.Draw(image)
|
118 |
+
font = ImageFont.load_default()
|
119 |
+
for prediction, box in zip(true_predictions, true_boxes):
|
120 |
+
predicted_label = iob_to_label(prediction)
|
121 |
+
draw.rectangle(box, outline=label2color[predicted_label])
|
122 |
+
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
|
123 |
+
|
124 |
+
return image
|
125 |
+
|
126 |
+
|
127 |
+
title = "OCR Document Paper - Invoice"
|
128 |
+
description = "Fine-tuned Microsoft's LayoutLMv3 on WildReceipt Dataset to parse Invoice OCR document. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
129 |
+
|
130 |
+
article="<b>References</b><br>[1] Y. Xu et al., βLayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.β 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a><br>[3] Hongbin Sun, Zhanghui Kuang, Xiaoyu Yue, Chenhao Lin, and Wayne Zhang. 2021. Spatial Dual-Modality Graph Reasoning for Key Information Extraction. arXiv. DOI:https://doi.org/10.48550/ARXIV.2103.14470 <a href='https://doi.org/10.48550/ARXIV.2103.14470'>Paper Link</a>"
|
131 |
+
|
132 |
+
examples =[['example1.png'],['example2.png'],['example3.png']]
|
133 |
+
|
134 |
+
css = """.output_image, .input_image {height: 600px !important}"""
|
135 |
+
|
136 |
+
iface = gr.Interface(fn=process_image,
|
137 |
+
inputs=gr.inputs.Image(type="pil"),
|
138 |
+
outputs=gr.outputs.Image(type="pil", label="annotated image"),
|
139 |
+
title=title,
|
140 |
+
description=description,
|
141 |
+
article=article,
|
142 |
+
examples=examples,
|
143 |
+
css=css,
|
144 |
+
analytics_enabled = True, enable_queue=True)
|
145 |
+
|
146 |
+
iface.launch(inline=False, share=True, debug=True)
|