Spaces:
Running
on
T4
Running
on
T4
File size: 8,764 Bytes
19658e6 8a59b10 71c19c0 19658e6 30f88b5 19658e6 61d15bc 19658e6 7e05a22 d752c3b 19658e6 f8b4072 19658e6 61d15bc 19658e6 5fa7303 30f88b5 5fa7303 30f88b5 5fa7303 19658e6 61d15bc 19658e6 61d15bc 19658e6 61d15bc 19658e6 aadf06d 19658e6 d752c3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import os
os.system(f"pip install -U openmim")
os.system(f"mim install mmcv")
os.system(f"pip install git+https://github.com/jinlinyi/PerspectiveFields.git@dev#egg=perspective2d")
import gradio as gr
import cv2
import copy
import torch
from PIL import Image, ImageDraw
from glob import glob
import numpy as np
import os.path as osp
from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
from perspective2d.utils.predictor import VisualizationDemo
import perspective2d.modeling # noqa
from perspective2d.config import get_perspective2d_cfg_defaults
from perspective2d.utils import draw_from_r_p_f_cx_cy
title = "Perspective Fields Demo"
description = """
<p style="text-align: center">
<a href="https://jinlinyi.github.io/PerspectiveFields/" target="_blank">Project Page</a> |
<a href="https://arxiv.org/abs/2212.03239" target="_blank">Paper</a> |
<a href="https://github.com/jinlinyi/PerspectiveFields" target="_blank">Code</a> |
<a href="https://www.youtube.com/watch?v=sN5B_ZvMva8&themeRefresh=1" target="_blank">Video</a>
</p>
<h2>Gradio Demo</h2>
<p>Try our Gradio demo for Perspective Fields for single image camera calibration. You can click on one of the provided examples or upload your own image.</p>
<h3>Available Models:</h3>
<ol>
<li><span style="color:red;">[NEW!!!]</span><strong>Paramnet-360Cities-edina:</strong> Our latest model trained on <a href="https://www.360cities.net/">360cities</a> and <a href="https://github.com/tien-d/EgoDepthNormal/tree/main#egocentric-depth-on-everyday-indoor-activities-edina-dataset">EDINA</a> dataset.</li>
<li><strong>PersNet-360Cities:</strong> PerspectiveNet trained on the 360Cities dataset. This model predicts perspective fields and is designed to be robust and generalize well to both indoor and outdoor images.</li>
<li><strong>PersNet_Paramnet-GSV-uncentered:</strong> A combination of PerspectiveNet and ParamNet trained on the Google Street View (GSV) dataset. This model predicts camera Roll, Pitch, and Field of View (FoV), as well as the Principal Point location.</li>
<li><strong>PersNet_Paramnet-GSV-centered:</strong> PerspectiveNet+ParamNet trained on the GSV dataset. This model assumes the principal point is at the center of the image and predicts camera Roll, Pitch, and FoV.</li>
</ol>
"""
article = """
<p style='text-align: center'><a href='https://arxiv.org/abs/2212.03239' target='_blank'>Perspective Fields for Single Image Camera Calibrations</a> | <a href='https://github.com/jinlinyi/PerspectiveFields' target='_blank'>Github Repo</a></p>
"""
def setup_cfg(args):
cfgs = []
configs = args['config_file'].split('#')
weights_id = args['opts'].index('MODEL.WEIGHTS') + 1
weights = args['opts'][weights_id].split('#')
for i, conf in enumerate(configs):
if len(conf) != 0:
tmp_opts = copy.deepcopy(args['opts'])
tmp_opts[weights_id] = weights[i]
cfg = get_cfg()
get_perspective2d_cfg_defaults(cfg)
cfg.merge_from_file(conf)
cfg.merge_from_list(tmp_opts)
cfg.freeze()
cfgs.append(cfg)
return cfgs
def resize_fix_aspect_ratio(img, field, target_width=None, target_height=None):
height = img.shape[0]
width = img.shape[1]
if target_height is None:
factor = target_width / width
elif target_width is None:
factor = target_height / height
else:
factor = max(target_width / width, target_height / height)
if factor == target_width / width:
target_height = int(height * factor)
else:
target_width = int(width * factor)
img = cv2.resize(img, (target_width, target_height))
for key in field:
if key not in ['up', 'lati']:
continue
tmp = field[key].numpy()
transpose = len(tmp.shape) == 3
if transpose:
tmp = tmp.transpose(1,2,0)
tmp = cv2.resize(tmp, (target_width, target_height))
if transpose:
tmp = tmp.transpose(2,0,1)
field[key] = torch.tensor(tmp)
return img, field
def inference(img, model_type):
img_h = img.shape[0]
if model_type is None:
return None, ""
perspective_cfg_list = setup_cfg(model_zoo[model_type])
demo = VisualizationDemo(cfg_list=perspective_cfg_list)
# img = read_image(image_path, format="BGR")
img = img[..., ::-1] # rgb->bgr
pred = demo.run_on_image(img)
field = {
'up': pred['pred_gravity_original'].cpu().detach(),
'lati': pred['pred_latitude_original'].cpu().detach(),
}
img, field = resize_fix_aspect_ratio(img, field, 640)
if not model_zoo[model_type]['param']:
pred_vis = demo.draw(
image=img,
latimap=field['lati'],
gravity=field['up'],
latimap_format=pred['pred_latitude_original_mode'],
).get_image()
param = "Not Implemented"
else:
if 'pred_general_vfov' not in pred.keys():
pred['pred_general_vfov'] = pred['pred_vfov']
if 'pred_rel_cx' not in pred.keys():
pred['pred_rel_cx'] = torch.FloatTensor([0])
if 'pred_rel_cy' not in pred.keys():
pred['pred_rel_cy'] = torch.FloatTensor([0])
r_p_f_rad = np.radians(
[
pred['pred_roll'].cpu().item(),
pred['pred_pitch'].cpu().item(),
pred['pred_general_vfov'].cpu().item(),
]
)
cx_cy = [
pred['pred_rel_cx'].cpu().item(),
pred['pred_rel_cy'].cpu().item(),
]
param = f"roll {pred['pred_roll'].cpu().item() :.2f}\npitch {pred['pred_pitch'].cpu().item() :.2f}\nvertical fov {pred['pred_general_vfov'].cpu().item() :.2f}\nfocal_length {pred['pred_rel_focal'].cpu().item()*img_h :.2f}\n"
param += f"principal point {pred['pred_rel_cx'].cpu().item() :.2f} {pred['pred_rel_cy'].cpu().item() :.2f}"
pred_vis = draw_from_r_p_f_cx_cy(
img[:,:,::-1],
*r_p_f_rad,
*cx_cy,
'rad',
up_color=(0,1,0),
)
return Image.fromarray(pred_vis), param
examples = []
for img_name in glob('assets/imgs/*.*g'):
examples.append([img_name])
print(examples)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_zoo = {
'NEW:Paramnet-360Cities-edina-centered': {
'weights': ['https://www.dropbox.com/s/z2dja70bgy007su/paramnet_360cities_edina_rpf.pth'],
'opts': ['MODEL.WEIGHTS', 'models/paramnet_360cities_edina_rpf.pth', 'MODEL.DEVICE', device,],
'config_file': 'models/paramnet_360cities_edina_rpf.yaml',
'param': True,
},
'NEW:Paramnet-360Cities-edina-uncentered': {
'weights': ['https://www.dropbox.com/s/nt29e1pi83mm1va/paramnet_360cities_edina_rpfpp.pth'],
'opts': ['MODEL.WEIGHTS', 'models/paramnet_360cities_edina_rpfpp.pth', 'MODEL.DEVICE', device,],
'config_file': 'models/paramnet_360cities_edina_rpfpp.yaml',
'param': True,
},
'PersNet-360Cities': {
'weights': ['https://www.dropbox.com/s/czqrepqe7x70b7y/cvpr2023.pth'],
'opts': ['MODEL.WEIGHTS', 'models/cvpr2023.pth', 'MODEL.DEVICE', device,],
'config_file': 'models/cvpr2023.yaml',
'param': False,
},
'PersNet_Paramnet-GSV-uncentered': {
'weights': ['https://www.dropbox.com/s/ufdadxigewakzlz/paramnet_gsv_rpfpp.pth'],
'opts': ['MODEL.WEIGHTS', 'models/paramnet_gsv_rpfpp.pth', 'MODEL.DEVICE', device,],
'config_file': 'models/paramnet_gsv_rpfpp.yaml',
'param': True,
},
# trained on GSV dataset, predicts Perspective Fields + camera parameters (roll, pitch, fov), assuming centered principal point
'PersNet_Paramnet-GSV-centered': {
'weights': ['https://www.dropbox.com/s/g6xwbgnkggapyeu/paramnet_gsv_rpf.pth'],
'opts': ['MODEL.WEIGHTS', 'models/paramnet_gsv_rpf.pth', 'MODEL.DEVICE', device,],
'config_file': 'models/paramnet_gsv_rpf.yaml',
'param': True,
},
}
for model_id in model_zoo:
html = model_zoo[model_id]['weights'][0]
if not os.path.exists(os.path.join('models', html.split('/')[-1])):
os.system(f"wget -P models/ {html}")
info = """Select model\n"""
gr.Interface(
fn=inference,
inputs=[
"image",
gr.Radio(
list(model_zoo.keys()),
value=list(sorted(model_zoo.keys()))[0],
label="Model",
info=info,
),
],
outputs=[gr.Image(label='Perspective Fields'), gr.Textbox(label='Pred Camera Parameters')],
title=title,
description=description,
article=article,
examples=examples,
).launch() |