File size: 8,764 Bytes
19658e6
 
8a59b10
 
71c19c0
 
19658e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f88b5
19658e6
 
 
 
 
 
 
 
 
 
 
61d15bc
 
 
19658e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e05a22
d752c3b
 
19658e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8b4072
19658e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d15bc
19658e6
5fa7303
30f88b5
5fa7303
 
 
 
 
 
30f88b5
5fa7303
 
 
 
 
 
19658e6
 
61d15bc
19658e6
 
 
 
 
61d15bc
19658e6
 
 
 
 
 
61d15bc
19658e6
 
 
 
aadf06d
 
19658e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d752c3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

import os
os.system(f"pip install -U openmim")
os.system(f"mim install mmcv")
os.system(f"pip install git+https://github.com/jinlinyi/PerspectiveFields.git@dev#egg=perspective2d")


import gradio as gr
import cv2
import copy
import torch
from PIL import Image, ImageDraw
from glob import glob
import numpy as np
import os.path as osp
from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
from perspective2d.utils.predictor import VisualizationDemo
import perspective2d.modeling  # noqa
from perspective2d.config import get_perspective2d_cfg_defaults
from perspective2d.utils import draw_from_r_p_f_cx_cy




title = "Perspective Fields Demo"

description = """
<p style="text-align: center">
    <a href="https://jinlinyi.github.io/PerspectiveFields/" target="_blank">Project Page</a> | 
    <a href="https://arxiv.org/abs/2212.03239" target="_blank">Paper</a> | 
    <a href="https://github.com/jinlinyi/PerspectiveFields" target="_blank">Code</a> | 
    <a href="https://www.youtube.com/watch?v=sN5B_ZvMva8&themeRefresh=1" target="_blank">Video</a>
</p>
<h2>Gradio Demo</h2>
<p>Try our Gradio demo for Perspective Fields for single image camera calibration. You can click on one of the provided examples or upload your own image.</p>
<h3>Available Models:</h3>
<ol>
    <li><span style="color:red;">[NEW!!!]</span><strong>Paramnet-360Cities-edina:</strong> Our latest model trained on <a href="https://www.360cities.net/">360cities</a> and <a href="https://github.com/tien-d/EgoDepthNormal/tree/main#egocentric-depth-on-everyday-indoor-activities-edina-dataset">EDINA</a> dataset.</li>
    <li><strong>PersNet-360Cities:</strong> PerspectiveNet trained on the 360Cities dataset. This model predicts perspective fields and is designed to be robust and generalize well to both indoor and outdoor images.</li>
    <li><strong>PersNet_Paramnet-GSV-uncentered:</strong> A combination of PerspectiveNet and ParamNet trained on the Google Street View (GSV) dataset. This model predicts camera Roll, Pitch, and Field of View (FoV), as well as the Principal Point location.</li>
    <li><strong>PersNet_Paramnet-GSV-centered:</strong> PerspectiveNet+ParamNet trained on the GSV dataset. This model assumes the principal point is at the center of the image and predicts camera Roll, Pitch, and FoV.</li>
</ol>
"""


article = """
<p style='text-align: center'><a href='https://arxiv.org/abs/2212.03239' target='_blank'>Perspective Fields for Single Image Camera Calibrations</a> | <a href='https://github.com/jinlinyi/PerspectiveFields' target='_blank'>Github Repo</a></p>
"""




def setup_cfg(args):
    cfgs = []
    configs = args['config_file'].split('#')
    weights_id = args['opts'].index('MODEL.WEIGHTS') + 1
    weights = args['opts'][weights_id].split('#')
    for i, conf in enumerate(configs):
        if len(conf) != 0:
            tmp_opts = copy.deepcopy(args['opts'])
            tmp_opts[weights_id] = weights[i]
            cfg = get_cfg()
            get_perspective2d_cfg_defaults(cfg)
            cfg.merge_from_file(conf)
            cfg.merge_from_list(tmp_opts)
            cfg.freeze()
            cfgs.append(cfg)
    return cfgs

def resize_fix_aspect_ratio(img, field, target_width=None, target_height=None):
    height = img.shape[0]
    width = img.shape[1]
    if target_height is None:
        factor = target_width / width
    elif target_width is None:
        factor = target_height / height
    else:
        factor = max(target_width / width, target_height / height)
    if factor == target_width / width:
        target_height = int(height * factor)
    else:
        target_width = int(width * factor)
        
    img = cv2.resize(img, (target_width, target_height))
    for key in field:
        if key not in ['up', 'lati']:
            continue
        tmp = field[key].numpy()
        transpose = len(tmp.shape) == 3
        if transpose:
            tmp = tmp.transpose(1,2,0)
        tmp = cv2.resize(tmp, (target_width, target_height))
        if transpose:
            tmp = tmp.transpose(2,0,1)
        field[key] = torch.tensor(tmp)
    return img, field


def inference(img, model_type):
    img_h = img.shape[0]
    if model_type is None:
        return None, ""
    perspective_cfg_list = setup_cfg(model_zoo[model_type])
    demo = VisualizationDemo(cfg_list=perspective_cfg_list)

    # img = read_image(image_path, format="BGR")
    img = img[..., ::-1] # rgb->bgr
    pred = demo.run_on_image(img)
    field = {
        'up': pred['pred_gravity_original'].cpu().detach(),
        'lati': pred['pred_latitude_original'].cpu().detach(),
    }
    img, field = resize_fix_aspect_ratio(img, field, 640)
    if not model_zoo[model_type]['param']:
        pred_vis = demo.draw(
            image=img,
            latimap=field['lati'],
            gravity=field['up'],
            latimap_format=pred['pred_latitude_original_mode'],
        ).get_image()
        param = "Not Implemented"
    else:
        if 'pred_general_vfov' not in pred.keys():
            pred['pred_general_vfov'] = pred['pred_vfov']
        if 'pred_rel_cx' not in pred.keys():
            pred['pred_rel_cx'] = torch.FloatTensor([0])
        if 'pred_rel_cy' not in pred.keys():
            pred['pred_rel_cy'] = torch.FloatTensor([0])
            
        r_p_f_rad = np.radians(
            [
                pred['pred_roll'].cpu().item(),
                pred['pred_pitch'].cpu().item(),
                pred['pred_general_vfov'].cpu().item(),
            ]
        )
        cx_cy = [
            pred['pred_rel_cx'].cpu().item(),
            pred['pred_rel_cy'].cpu().item(),
        ]
        param = f"roll {pred['pred_roll'].cpu().item() :.2f}\npitch {pred['pred_pitch'].cpu().item() :.2f}\nvertical fov {pred['pred_general_vfov'].cpu().item() :.2f}\nfocal_length {pred['pred_rel_focal'].cpu().item()*img_h :.2f}\n"
        param += f"principal point {pred['pred_rel_cx'].cpu().item() :.2f} {pred['pred_rel_cy'].cpu().item() :.2f}"
        pred_vis = draw_from_r_p_f_cx_cy(
            img[:,:,::-1], 
            *r_p_f_rad,
            *cx_cy,
            'rad',
            up_color=(0,1,0),
        )
    return Image.fromarray(pred_vis), param

examples = []
for img_name in glob('assets/imgs/*.*g'):
    examples.append([img_name])
print(examples)

device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_zoo = {

    'NEW:Paramnet-360Cities-edina-centered': {
        'weights': ['https://www.dropbox.com/s/z2dja70bgy007su/paramnet_360cities_edina_rpf.pth'],
        'opts': ['MODEL.WEIGHTS', 'models/paramnet_360cities_edina_rpf.pth', 'MODEL.DEVICE', device,],
        'config_file': 'models/paramnet_360cities_edina_rpf.yaml',
        'param': True,
    },

   'NEW:Paramnet-360Cities-edina-uncentered': {
        'weights': ['https://www.dropbox.com/s/nt29e1pi83mm1va/paramnet_360cities_edina_rpfpp.pth'],
        'opts': ['MODEL.WEIGHTS', 'models/paramnet_360cities_edina_rpfpp.pth', 'MODEL.DEVICE', device,],
        'config_file': 'models/paramnet_360cities_edina_rpfpp.yaml',
        'param': True,
    },

    'PersNet-360Cities': {
        'weights': ['https://www.dropbox.com/s/czqrepqe7x70b7y/cvpr2023.pth'],
        'opts': ['MODEL.WEIGHTS', 'models/cvpr2023.pth', 'MODEL.DEVICE', device,],
        'config_file': 'models/cvpr2023.yaml',
        'param': False,
    },
    'PersNet_Paramnet-GSV-uncentered': {
        'weights': ['https://www.dropbox.com/s/ufdadxigewakzlz/paramnet_gsv_rpfpp.pth'],
        'opts': ['MODEL.WEIGHTS', 'models/paramnet_gsv_rpfpp.pth', 'MODEL.DEVICE', device,],
        'config_file': 'models/paramnet_gsv_rpfpp.yaml',
        'param': True,
    },
    # trained on GSV dataset, predicts Perspective Fields + camera parameters (roll, pitch, fov), assuming centered principal point
    'PersNet_Paramnet-GSV-centered': {
        'weights': ['https://www.dropbox.com/s/g6xwbgnkggapyeu/paramnet_gsv_rpf.pth'],
        'opts': ['MODEL.WEIGHTS', 'models/paramnet_gsv_rpf.pth', 'MODEL.DEVICE', device,],
        'config_file': 'models/paramnet_gsv_rpf.yaml',
        'param': True,
    },
}
for model_id in model_zoo:
    html = model_zoo[model_id]['weights'][0]
    if not os.path.exists(os.path.join('models', html.split('/')[-1])):
        os.system(f"wget -P models/ {html}")

info = """Select model\n"""
gr.Interface(
    fn=inference,
    inputs=[
        "image", 
        gr.Radio(
            list(model_zoo.keys()), 
            value=list(sorted(model_zoo.keys()))[0], 
            label="Model", 
            info=info,
        ),
    ],
    outputs=[gr.Image(label='Perspective Fields'), gr.Textbox(label='Pred Camera Parameters')],
    title=title,
    description=description,
    article=article,
    examples=examples,
).launch()