import os os.system(f"pip install git+https://github.com/jinlinyi/PerspectiveFields.git@dev#egg=perspective2d") import gradio as gr import cv2 import copy import torch from PIL import Image, ImageDraw from glob import glob import numpy as np import os.path as osp from detectron2.config import get_cfg from detectron2.data.detection_utils import read_image from perspective2d.utils.predictor import VisualizationDemo import perspective2d.modeling # noqa from perspective2d.config import get_perspective2d_cfg_defaults from perspective2d.utils import draw_from_r_p_f_cx_cy title = "Perspective Fields Demo" description = """

Project Page | Paper | Code | Video

Gradio Demo

Try our Gradio demo for Perspective Fields for single image camera calibration. You can click on one of the provided examples or upload your own image.

Available Models:

  1. PersNet-360Cities: PerspectiveNet trained on the 360Cities dataset. This model predicts perspective fields and is designed to be robust and generalize well to both indoor and outdoor images.
  2. PersNet_Paramnet-GSV-uncentered: A combination of PerspectiveNet and ParamNet trained on the Google Street View (GSV) dataset. This model predicts camera Roll, Pitch, and Field of View (FoV), as well as the Principal Point location.
  3. PersNet_Paramnet-GSV-centered: PerspectiveNet+ParamNet trained on the GSV dataset. This model assumes the principal point is at the center of the image and predicts camera Roll, Pitch, and FoV.
""" article = """

Perspective Fields for Single Image Camera Calibrations | Github Repo

""" def setup_cfg(args): cfgs = [] configs = args['config_file'].split('#') weights_id = args['opts'].index('MODEL.WEIGHTS') + 1 weights = args['opts'][weights_id].split('#') for i, conf in enumerate(configs): if len(conf) != 0: tmp_opts = copy.deepcopy(args['opts']) tmp_opts[weights_id] = weights[i] cfg = get_cfg() get_perspective2d_cfg_defaults(cfg) cfg.merge_from_file(conf) cfg.merge_from_list(tmp_opts) cfg.freeze() cfgs.append(cfg) return cfgs def resize_fix_aspect_ratio(img, field, target_width=None, target_height=None): height = img.shape[0] width = img.shape[1] if target_height is None: factor = target_width / width elif target_width is None: factor = target_height / height else: factor = max(target_width / width, target_height / height) if factor == target_width / width: target_height = int(height * factor) else: target_width = int(width * factor) img = cv2.resize(img, (target_width, target_height)) for key in field: if key not in ['up', 'lati']: continue tmp = field[key].numpy() transpose = len(tmp.shape) == 3 if transpose: tmp = tmp.transpose(1,2,0) tmp = cv2.resize(tmp, (target_width, target_height)) if transpose: tmp = tmp.transpose(2,0,1) field[key] = torch.tensor(tmp) return img, field def inference(img, model_type): perspective_cfg_list = setup_cfg(model_zoo[model_type]) demo = VisualizationDemo(cfg_list=perspective_cfg_list) # img = read_image(image_path, format="BGR") img = img[..., ::-1] # rgb->bgr pred = demo.run_on_image(img) field = { 'up': pred['pred_gravity_original'].cpu().detach(), 'lati': pred['pred_latitude_original'].cpu().detach(), } img, field = resize_fix_aspect_ratio(img, field, 640) if not model_zoo[model_type]['param']: pred_vis = demo.draw( image=img, latimap=field['lati'], gravity=field['up'], latimap_format=pred['pred_latitude_original_mode'], ).get_image() param = "Not Implemented" else: if 'pred_general_vfov' not in pred.keys(): pred['pred_general_vfov'] = pred['pred_vfov'] if 'pred_rel_cx' not in pred.keys(): pred['pred_rel_cx'] = torch.FloatTensor([0]) if 'pred_rel_cy' not in pred.keys(): pred['pred_rel_cy'] = torch.FloatTensor([0]) r_p_f_rad = np.radians( [ pred['pred_roll'].cpu().item(), pred['pred_pitch'].cpu().item(), pred['pred_general_vfov'].cpu().item(), ] ) cx_cy = [ pred['pred_rel_cx'].cpu().item(), pred['pred_rel_cy'].cpu().item(), ] param = f"roll {pred['pred_roll'].cpu().item() :.2f}\npitch {pred['pred_pitch'].cpu().item() :.2f}\nfov {pred['pred_general_vfov'].cpu().item() :.2f}\n" param += f"principal point {pred['pred_rel_cx'].cpu().item() :.2f} {pred['pred_rel_cy'].cpu().item() :.2f}" pred_vis = draw_from_r_p_f_cx_cy( img[:,:,::-1], *r_p_f_rad, *cx_cy, 'rad', up_color=(0,1,0), ) return Image.fromarray(pred_vis), param examples = [] for img_name in glob('assets/imgs/*.*g'): examples.append([img_name]) print(examples) model_zoo = { 'PersNet-360Cities': { 'weights': ['https://www.dropbox.com/s/czqrepqe7x70b7y/cvpr2023.pth'], 'opts': ['MODEL.WEIGHTS', 'models/cvpr2023.pth'], 'config_file': 'models/cvpr2023.yaml', 'param': False, }, 'PersNet_Paramnet-GSV-uncentered': { 'weights': ['https://www.dropbox.com/s/ufdadxigewakzlz/paramnet_gsv_rpfpp.pth'], 'opts': ['MODEL.WEIGHTS', 'models/paramnet_gsv_rpfpp.pth'], 'config_file': 'models/paramnet_gsv_rpfpp.yaml', 'param': True, }, # trained on GSV dataset, predicts Perspective Fields + camera parameters (roll, pitch, fov), assuming centered principal point 'PersNet_Paramnet-GSV-centered': { 'weights': ['https://www.dropbox.com/s/g6xwbgnkggapyeu/paramnet_gsv_rpf.pth'], 'opts': ['MODEL.WEIGHTS', 'models/paramnet_gsv_rpf.pth'], 'config_file': 'models/paramnet_gsv_rpf.yaml', 'param': True, }, } for model_id in model_zoo[model_id]: html = model_zoo[model_id]['weights'] if not os.path.exists(os.path.join('models', html.split('/')[-1])): os.system(f"wget -P models/ {html}") info = """Select model\n""" gr.Interface( fn=inference, inputs=[ "image", gr.Radio( list(model_zoo.keys()), value=list(sorted(model_zoo.keys()))[0], label="Model", info=info, ), ], outputs=[gr.Image(label='Perspective Fields'), gr.Textbox(label='Pred Camera Parameters')], title=title, description=description, article=article, examples=examples, ).launch(share=True)