# Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs (https://arxiv.org/abs/2203.06717) # Github source: https://github.com/DingXiaoH/RepLKNet-pytorch # Licensed under The MIT License [see LICENSE for details] # Based on ConvNeXt, timm, DINO and DeiT code bases # https://github.com/facebookresearch/ConvNeXt # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath import sys import os def get_conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias): if type(kernel_size) is int: use_large_impl = kernel_size > 5 else: assert len(kernel_size) == 2 and kernel_size[0] == kernel_size[1] use_large_impl = kernel_size[0] > 5 has_large_impl = 'LARGE_KERNEL_CONV_IMPL' in os.environ if has_large_impl and in_channels == out_channels and out_channels == groups and use_large_impl and stride == 1 and padding == kernel_size // 2 and dilation == 1: sys.path.append(os.environ['LARGE_KERNEL_CONV_IMPL']) # Please follow the instructions https://github.com/DingXiaoH/RepLKNet-pytorch/blob/main/README.md # export LARGE_KERNEL_CONV_IMPL=absolute_path_to_where_you_cloned_the_example (i.e., depthwise_conv2d_implicit_gemm.py) # TODO more efficient PyTorch implementations of large-kernel convolutions. Pull requests are welcomed. # Or you may try MegEngine. We have integrated an efficient implementation into MegEngine and it will automatically use it. from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM return DepthWiseConv2dImplicitGEMM(in_channels, kernel_size, bias=bias) else: return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) use_sync_bn = False def enable_sync_bn(): global use_sync_bn use_sync_bn = True def get_bn(channels): if use_sync_bn: return nn.SyncBatchNorm(channels) else: return nn.BatchNorm2d(channels) def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups, dilation=1): if padding is None: padding = kernel_size // 2 result = nn.Sequential() result.add_module('conv', get_conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)) result.add_module('bn', get_bn(out_channels)) return result def conv_bn_relu(in_channels, out_channels, kernel_size, stride, padding, groups, dilation=1): if padding is None: padding = kernel_size // 2 result = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=dilation) result.add_module('nonlinear', nn.ReLU()) return result def fuse_bn(conv, bn): kernel = conv.weight running_mean = bn.running_mean running_var = bn.running_var gamma = bn.weight beta = bn.bias eps = bn.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std class ReparamLargeKernelConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, groups, small_kernel, small_kernel_merged=False): super(ReparamLargeKernelConv, self).__init__() self.kernel_size = kernel_size self.small_kernel = small_kernel # We assume the conv does not change the feature map size, so padding = k//2. Otherwise, you may configure padding as you wish, and change the padding of small_conv accordingly. padding = kernel_size // 2 if small_kernel_merged: self.lkb_reparam = get_conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=1, groups=groups, bias=True) else: self.lkb_origin = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=1, groups=groups) if small_kernel is not None: assert small_kernel <= kernel_size, 'The kernel size for re-param cannot be larger than the large kernel!' self.small_conv = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=small_kernel, stride=stride, padding=small_kernel//2, groups=groups, dilation=1) def forward(self, inputs): if hasattr(self, 'lkb_reparam'): out = self.lkb_reparam(inputs) else: out = self.lkb_origin(inputs) if hasattr(self, 'small_conv'): out += self.small_conv(inputs) return out def get_equivalent_kernel_bias(self): eq_k, eq_b = fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn) if hasattr(self, 'small_conv'): small_k, small_b = fuse_bn(self.small_conv.conv, self.small_conv.bn) eq_b += small_b # add to the central part eq_k += nn.functional.pad(small_k, [(self.kernel_size - self.small_kernel) // 2] * 4) return eq_k, eq_b def merge_kernel(self): eq_k, eq_b = self.get_equivalent_kernel_bias() self.lkb_reparam = get_conv2d(in_channels=self.lkb_origin.conv.in_channels, out_channels=self.lkb_origin.conv.out_channels, kernel_size=self.lkb_origin.conv.kernel_size, stride=self.lkb_origin.conv.stride, padding=self.lkb_origin.conv.padding, dilation=self.lkb_origin.conv.dilation, groups=self.lkb_origin.conv.groups, bias=True) self.lkb_reparam.weight.data = eq_k self.lkb_reparam.bias.data = eq_b self.__delattr__('lkb_origin') if hasattr(self, 'small_conv'): self.__delattr__('small_conv') class ConvFFN(nn.Module): def __init__(self, in_channels, internal_channels, out_channels, drop_path): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.preffn_bn = get_bn(in_channels) self.pw1 = conv_bn(in_channels=in_channels, out_channels=internal_channels, kernel_size=1, stride=1, padding=0, groups=1) self.pw2 = conv_bn(in_channels=internal_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, groups=1) self.nonlinear = nn.GELU() def forward(self, x): out = self.preffn_bn(x) out = self.pw1(out) out = self.nonlinear(out) out = self.pw2(out) return x + self.drop_path(out) class RepLKBlock(nn.Module): def __init__(self, in_channels, dw_channels, block_lk_size, small_kernel, drop_path, small_kernel_merged=False): super().__init__() self.pw1 = conv_bn_relu(in_channels, dw_channels, 1, 1, 0, groups=1) self.pw2 = conv_bn(dw_channels, in_channels, 1, 1, 0, groups=1) self.large_kernel = ReparamLargeKernelConv(in_channels=dw_channels, out_channels=dw_channels, kernel_size=block_lk_size, stride=1, groups=dw_channels, small_kernel=small_kernel, small_kernel_merged=small_kernel_merged) self.lk_nonlinear = nn.ReLU() self.prelkb_bn = get_bn(in_channels) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() print('drop path:', self.drop_path) def forward(self, x): out = self.prelkb_bn(x) out = self.pw1(out) out = self.large_kernel(out) out = self.lk_nonlinear(out) out = self.pw2(out) return x + self.drop_path(out) class RepLKNetStage(nn.Module): def __init__(self, channels, num_blocks, stage_lk_size, drop_path, small_kernel, dw_ratio=1, ffn_ratio=4, use_checkpoint=False, # train with torch.utils.checkpoint to save memory small_kernel_merged=False, norm_intermediate_features=False): super().__init__() self.use_checkpoint = use_checkpoint blks = [] for i in range(num_blocks): block_drop_path = drop_path[i] if isinstance(drop_path, list) else drop_path # Assume all RepLK Blocks within a stage share the same lk_size. You may tune it on your own model. replk_block = RepLKBlock(in_channels=channels, dw_channels=int(channels * dw_ratio), block_lk_size=stage_lk_size, small_kernel=small_kernel, drop_path=block_drop_path, small_kernel_merged=small_kernel_merged) convffn_block = ConvFFN(in_channels=channels, internal_channels=int(channels * ffn_ratio), out_channels=channels, drop_path=block_drop_path) blks.append(replk_block) blks.append(convffn_block) self.blocks = nn.ModuleList(blks) if norm_intermediate_features: self.norm = get_bn(channels) # Only use this with RepLKNet-XL on downstream tasks else: self.norm = nn.Identity() def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) # Save training memory else: x = blk(x) return x class RepLKNet(nn.Module): def __init__(self, large_kernel_sizes, layers, channels, drop_path_rate, small_kernel, dw_ratio=1, ffn_ratio=4, in_channels=3, num_classes=1000, out_indices=None, use_checkpoint=False, small_kernel_merged=False, use_sync_bn=True, norm_intermediate_features=False # for RepLKNet-XL on COCO and ADE20K, use an extra BN to normalize the intermediate feature maps then feed them into the heads ): super().__init__() if num_classes is None and out_indices is None: raise ValueError('must specify one of num_classes (for pretraining) and out_indices (for downstream tasks)') elif num_classes is not None and out_indices is not None: raise ValueError('cannot specify both num_classes (for pretraining) and out_indices (for downstream tasks)') elif num_classes is not None and norm_intermediate_features: raise ValueError('for pretraining, no need to normalize the intermediate feature maps') self.out_indices = out_indices if use_sync_bn: enable_sync_bn() base_width = channels[0] self.use_checkpoint = use_checkpoint self.norm_intermediate_features = norm_intermediate_features self.num_stages = len(layers) self.stem = nn.ModuleList([ conv_bn_relu(in_channels=in_channels, out_channels=base_width, kernel_size=3, stride=2, padding=1, groups=1), conv_bn_relu(in_channels=base_width, out_channels=base_width, kernel_size=3, stride=1, padding=1, groups=base_width), conv_bn_relu(in_channels=base_width, out_channels=base_width, kernel_size=1, stride=1, padding=0, groups=1), conv_bn_relu(in_channels=base_width, out_channels=base_width, kernel_size=3, stride=2, padding=1, groups=base_width)]) # stochastic depth. We set block-wise drop-path rate. The higher level blocks are more likely to be dropped. This implementation follows Swin. dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(layers))] self.stages = nn.ModuleList() self.transitions = nn.ModuleList() for stage_idx in range(self.num_stages): layer = RepLKNetStage(channels=channels[stage_idx], num_blocks=layers[stage_idx], stage_lk_size=large_kernel_sizes[stage_idx], drop_path=dpr[sum(layers[:stage_idx]):sum(layers[:stage_idx + 1])], small_kernel=small_kernel, dw_ratio=dw_ratio, ffn_ratio=ffn_ratio, use_checkpoint=use_checkpoint, small_kernel_merged=small_kernel_merged, norm_intermediate_features=norm_intermediate_features) self.stages.append(layer) if stage_idx < len(layers) - 1: transition = nn.Sequential( conv_bn_relu(channels[stage_idx], channels[stage_idx + 1], 1, 1, 0, groups=1), conv_bn_relu(channels[stage_idx + 1], channels[stage_idx + 1], 3, stride=2, padding=1, groups=channels[stage_idx + 1])) self.transitions.append(transition) if num_classes is not None: self.norm = get_bn(channels[-1]) self.avgpool = nn.AdaptiveAvgPool2d(1) self.head = nn.Linear(channels[-1], num_classes) def forward_features(self, x): x = self.stem[0](x) for stem_layer in self.stem[1:]: if self.use_checkpoint: x = checkpoint.checkpoint(stem_layer, x) # save memory else: x = stem_layer(x) if self.out_indices is None: # Just need the final output for stage_idx in range(self.num_stages): x = self.stages[stage_idx](x) if stage_idx < self.num_stages - 1: x = self.transitions[stage_idx](x) return x else: # Need the intermediate feature maps outs = [] for stage_idx in range(self.num_stages): x = self.stages[stage_idx](x) if stage_idx in self.out_indices: outs.append(self.stages[stage_idx].norm(x)) # For RepLKNet-XL normalize the features before feeding them into the heads if stage_idx < self.num_stages - 1: x = self.transitions[stage_idx](x) return outs def forward(self, x): x = self.forward_features(x) if self.out_indices: return x else: x = self.norm(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.head(x) return x def structural_reparam(self): for m in self.modules(): if hasattr(m, 'merge_kernel'): m.merge_kernel() # If your framework cannot automatically fuse BN for inference, you may do it manually. # The BNs after and before conv layers can be removed. # No need to call this if your framework support automatic BN fusion. def deep_fuse_BN(self): for m in self.modules(): if not isinstance(m, nn.Sequential): continue if not len(m) in [2, 3]: # Only handle conv-BN or conv-BN-relu continue # If you use a custom Conv2d impl, assume it also has 'kernel_size' and 'weight' if hasattr(m[0], 'kernel_size') and hasattr(m[0], 'weight') and isinstance(m[1], nn.BatchNorm2d): conv = m[0] bn = m[1] fused_kernel, fused_bias = fuse_bn(conv, bn) fused_conv = get_conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, dilation=conv.dilation, groups=conv.groups, bias=True) fused_conv.weight.data = fused_kernel fused_conv.bias.data = fused_bias m[0] = fused_conv m[1] = nn.Identity() def create_RepLKNet31B(drop_path_rate=0.5, num_classes=1000, use_checkpoint=False, small_kernel_merged=False, use_sync_bn=True): return RepLKNet(large_kernel_sizes=[31,29,27,13], layers=[2,2,18,2], channels=[128,256,512,1024], drop_path_rate=drop_path_rate, small_kernel=5, num_classes=num_classes, use_checkpoint=use_checkpoint, small_kernel_merged=small_kernel_merged, use_sync_bn=use_sync_bn) def create_RepLKNet31L(drop_path_rate=0.3, num_classes=1000, use_checkpoint=True, small_kernel_merged=False): return RepLKNet(large_kernel_sizes=[31,29,27,13], layers=[2,2,18,2], channels=[192,384,768,1536], drop_path_rate=drop_path_rate, small_kernel=5, num_classes=num_classes, use_checkpoint=use_checkpoint, small_kernel_merged=small_kernel_merged) def create_RepLKNetXL(drop_path_rate=0.3, num_classes=1000, use_checkpoint=True, small_kernel_merged=False): return RepLKNet(large_kernel_sizes=[27,27,27,13], layers=[2,2,18,2], channels=[256,512,1024,2048], drop_path_rate=drop_path_rate, small_kernel=None, dw_ratio=1.5, num_classes=num_classes, use_checkpoint=use_checkpoint, small_kernel_merged=small_kernel_merged) if __name__ == '__main__': model = create_RepLKNet31B(small_kernel_merged=False) model.eval() print('------------------- training-time model -------------') print(model) x = torch.randn(2, 3, 224, 224) origin_y = model(x) model.structural_reparam() print('------------------- after re-param -------------') print(model) reparam_y = model(x) print('------------------- the difference is ------------------------') print((origin_y - reparam_y).abs().sum())