ai-model-002 / utils.py
nick_93
init
87b4a1a
import gc
import numpy as np
from PIL import Image
import torch
from scipy.signal import fftconvolve
from palette import COLOR_MAPPING, COLOR_MAPPING_
def to_rgb(color: str) -> tuple:
"""Convert hex color to rgb.
Args:
color (str): hex color
Returns:
tuple: rgb color
"""
return tuple(int(color[i:i+2], 16) for i in (1, 3, 5))
def map_colors(color: str) -> str:
"""Map color to hex value.
Args:
color (str): color name
Returns:
str: hex value
"""
return COLOR_MAPPING[color]
def map_colors_rgb(color: tuple) -> str:
return COLOR_MAPPING_RGB[color]
def convolution(mask: Image.Image, size=9) -> Image:
"""Method to blur the mask
Args:
mask (Image): masking image
size (int, optional): size of the blur. Defaults to 9.
Returns:
Image: blurred mask
"""
mask = np.array(mask.convert("L"))
conv = np.ones((size, size)) / size**2
mask_blended = fftconvolve(mask, conv, 'same')
mask_blended = mask_blended.astype(np.uint8).copy()
border = size
# replace borders with original values
mask_blended[:border, :] = mask[:border, :]
mask_blended[-border:, :] = mask[-border:, :]
mask_blended[:, :border] = mask[:, :border]
mask_blended[:, -border:] = mask[:, -border:]
return Image.fromarray(mask_blended).convert("L")
def flush():
gc.collect()
torch.cuda.empty_cache()
def postprocess_image_masking(inpainted: Image, image: Image,
mask: Image) -> Image:
"""Method to postprocess the inpainted image
Args:
inpainted (Image): inpainted image
image (Image): original image
mask (Image): mask
Returns:
Image: inpainted image
"""
final_inpainted = Image.composite(inpainted.convert("RGBA"),
image.convert("RGBA"), mask)
return final_inpainted.convert("RGB")
COLOR_NAMES = list(COLOR_MAPPING.keys())
COLOR_RGB = [to_rgb(k) for k in COLOR_MAPPING_.keys()] + [(0, 0, 0),
(255, 255, 255)]
INVERSE_COLORS = {v: to_rgb(k) for k, v in COLOR_MAPPING_.items()}
COLOR_MAPPING_RGB = {to_rgb(k): v for k, v in COLOR_MAPPING_.items()}