Spaces:
Running
on
Zero
Running
on
Zero
make it return 0 or 1 mask
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import
|
2 |
|
3 |
import gradio as gr
|
4 |
import spaces
|
@@ -26,43 +26,34 @@ SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
|
26 |
@spaces.GPU
|
27 |
@torch.inference_mode()
|
28 |
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
29 |
-
def process_image(
|
30 |
-
image_input, text_input
|
31 |
-
) -> List[Image.Image]:
|
32 |
if not image_input:
|
33 |
gr.Info("Please upload an image.")
|
34 |
-
return
|
35 |
|
36 |
if not text_input:
|
37 |
gr.Info("Please enter a text prompt.")
|
38 |
-
return
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
resolution_wh=image_input.size
|
55 |
-
)
|
56 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
57 |
-
detections_list.append(detections)
|
58 |
-
|
59 |
-
detections = sv.Detections.merge(detections_list)
|
60 |
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
]
|
66 |
|
67 |
|
68 |
with gr.Blocks() as demo:
|
@@ -72,11 +63,11 @@ with gr.Blocks() as demo:
|
|
72 |
type='pil', label='Upload image')
|
73 |
text_input_component = gr.Textbox(
|
74 |
label='Text prompt',
|
75 |
-
placeholder='Enter
|
76 |
submit_button_component = gr.Button(
|
77 |
value='Submit', variant='primary')
|
78 |
with gr.Column():
|
79 |
-
|
80 |
|
81 |
submit_button_component.click(
|
82 |
fn=process_image,
|
@@ -85,7 +76,7 @@ with gr.Blocks() as demo:
|
|
85 |
text_input_component
|
86 |
],
|
87 |
outputs=[
|
88 |
-
|
89 |
]
|
90 |
)
|
91 |
text_input_component.submit(
|
@@ -95,7 +86,7 @@ with gr.Blocks() as demo:
|
|
95 |
text_input_component
|
96 |
],
|
97 |
outputs=[
|
98 |
-
|
99 |
]
|
100 |
)
|
101 |
|
|
|
1 |
+
from typing import Optional
|
2 |
|
3 |
import gradio as gr
|
4 |
import spaces
|
|
|
26 |
@spaces.GPU
|
27 |
@torch.inference_mode()
|
28 |
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
29 |
+
def process_image(image_input, text_input) -> Optional[Image.Image]:
|
|
|
|
|
30 |
if not image_input:
|
31 |
gr.Info("Please upload an image.")
|
32 |
+
return None
|
33 |
|
34 |
if not text_input:
|
35 |
gr.Info("Please enter a text prompt.")
|
36 |
+
return None
|
37 |
|
38 |
+
_, result = run_florence_inference(
|
39 |
+
model=FLORENCE_MODEL,
|
40 |
+
processor=FLORENCE_PROCESSOR,
|
41 |
+
device=DEVICE,
|
42 |
+
image=image_input,
|
43 |
+
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
44 |
+
text=text_input
|
45 |
+
)
|
46 |
+
detections = sv.Detections.from_lmm(
|
47 |
+
lmm=sv.LMM.FLORENCE_2,
|
48 |
+
result=result,
|
49 |
+
resolution_wh=image_input.size
|
50 |
+
)
|
51 |
+
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
53 |
+
if len(detections) == 0:
|
54 |
+
gr.Info("No objects detected.")
|
55 |
+
return None
|
56 |
+
return Image.fromarray(detections.mask[0].astype("uint8") * 255)
|
|
|
57 |
|
58 |
|
59 |
with gr.Blocks() as demo:
|
|
|
63 |
type='pil', label='Upload image')
|
64 |
text_input_component = gr.Textbox(
|
65 |
label='Text prompt',
|
66 |
+
placeholder='Enter text prompts')
|
67 |
submit_button_component = gr.Button(
|
68 |
value='Submit', variant='primary')
|
69 |
with gr.Column():
|
70 |
+
image_output_component = gr.Image(label='Output mask')
|
71 |
|
72 |
submit_button_component.click(
|
73 |
fn=process_image,
|
|
|
76 |
text_input_component
|
77 |
],
|
78 |
outputs=[
|
79 |
+
image_output_component,
|
80 |
]
|
81 |
)
|
82 |
text_input_component.submit(
|
|
|
86 |
text_input_component
|
87 |
],
|
88 |
outputs=[
|
89 |
+
image_output_component,
|
90 |
]
|
91 |
)
|
92 |
|