Spaces:
Running
on
Zero
Running
on
Zero
from diffusers.utils import ( | |
convert_unet_state_dict_to_peft, | |
get_peft_kwargs, | |
is_peft_version, | |
get_adapter_name, | |
logging, | |
) | |
logger = logging.get_logger(__name__) | |
# patching inject_adapter_in_model and load_peft_state_dict with low_cpu_mem_usage=True until it's merged into diffusers | |
def load_lora_into_transformer( | |
cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None | |
): | |
""" | |
This will load the LoRA layers specified in `state_dict` into `transformer`. | |
Parameters: | |
state_dict (`dict`): | |
A standard state dict containing the lora layer parameters. The keys can either be indexed directly | |
into the unet or prefixed with an additional `unet` which can be used to distinguish between text | |
encoder lora layers. | |
network_alphas (`Dict[str, float]`): | |
The value of the network alpha used for stable learning and preventing underflow. This value has the | |
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | |
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | |
transformer (`SD3Transformer2DModel`): | |
The Transformer model to load the LoRA layers into. | |
adapter_name (`str`, *optional*): | |
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | |
`default_{i}` where i is the total number of adapters being loaded. | |
""" | |
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict | |
keys = list(state_dict.keys()) | |
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] | |
state_dict = { | |
k.replace(f"{cls.transformer_name}.", ""): v | |
for k, v in state_dict.items() | |
if k in transformer_keys | |
} | |
if len(state_dict.keys()) > 0: | |
# check with first key if is not in peft format | |
first_key = next(iter(state_dict.keys())) | |
if "lora_A" not in first_key: | |
state_dict = convert_unet_state_dict_to_peft(state_dict) | |
if adapter_name in getattr(transformer, "peft_config", {}): | |
raise ValueError( | |
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." | |
) | |
rank = {} | |
for key, val in state_dict.items(): | |
if "lora_B" in key: | |
rank[key] = val.shape[1] | |
if network_alphas is not None and len(network_alphas) >= 1: | |
prefix = cls.transformer_name | |
alpha_keys = [ | |
k | |
for k in network_alphas.keys() | |
if k.startswith(prefix) and k.split(".")[0] == prefix | |
] | |
network_alphas = { | |
k.replace(f"{prefix}.", ""): v | |
for k, v in network_alphas.items() | |
if k in alpha_keys | |
} | |
lora_config_kwargs = get_peft_kwargs( | |
rank, network_alpha_dict=network_alphas, peft_state_dict=state_dict | |
) | |
if "use_dora" in lora_config_kwargs: | |
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
else: | |
lora_config_kwargs.pop("use_dora") | |
lora_config = LoraConfig(**lora_config_kwargs) | |
# adapter_name | |
if adapter_name is None: | |
adapter_name = get_adapter_name(transformer) | |
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks | |
# otherwise loading LoRA weights will lead to an error | |
is_model_cpu_offload, is_sequential_cpu_offload = ( | |
cls._optionally_disable_offloading(_pipeline) | |
) | |
inject_adapter_in_model( | |
lora_config, transformer, adapter_name=adapter_name, low_cpu_mem_usage=True | |
) | |
incompatible_keys = set_peft_model_state_dict( | |
transformer, state_dict, adapter_name, low_cpu_mem_usage=True | |
) | |
if incompatible_keys is not None: | |
# check only for unexpected keys | |
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
if unexpected_keys: | |
logger.warning( | |
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
f" {unexpected_keys}. " | |
) | |
# Offload back. | |
if is_model_cpu_offload: | |
_pipeline.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
_pipeline.enable_sequential_cpu_offload() |