jiuface commited on
Commit
bece293
1 Parent(s): ae1ab67
__pycache__/controlnet_flux.cpython-310.pyc ADDED
Binary file (11.3 kB). View file
 
__pycache__/pipeline_flux_controlnet_inpaint.cpython-310.pyc ADDED
Binary file (29.3 kB). View file
 
__pycache__/transformer_flux.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
app.py CHANGED
@@ -22,57 +22,60 @@ from diffusers.utils import load_image, make_image_grid
22
 
23
  import json
24
  from preprocessor import Preprocessor
25
- from diffusers import FluxControlNetInpaintPipeline
26
- from diffusers.models import FluxControlNetModel
 
 
 
 
 
 
 
27
 
28
  HF_TOKEN = os.environ.get("HF_TOKEN")
29
 
30
  login(token=HF_TOKEN)
31
 
32
  MAX_SEED = np.iinfo(np.int32).max
33
- IMAGE_SIZE = 512
34
 
35
  # init
36
  device = "cuda" if torch.cuda.is_available() else "cpu"
37
  base_model = "black-forest-labs/FLUX.1-dev"
38
 
39
- controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union'
40
- controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
41
-
42
 
43
- pipe = FluxControlNetInpaintPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16).to(device)
 
 
 
 
44
 
45
- # pipe.enable_model_cpu_offload() # for saving memory
46
-
47
- control_mode_ids = {
48
- "canny": 0, # supported
49
- "tile": 1, # supported
50
- "depth": 2, # supported
51
- "blur": 3, # supported
52
- "pose": 4, # supported
53
- "gray": 5, # supported
54
- "lq": 6, # supported
55
- }
56
 
57
  def clear_cuda_cache():
58
  torch.cuda.empty_cache()
59
 
60
-
61
  class calculateDuration:
62
  def __init__(self, activity_name=""):
63
  self.activity_name = activity_name
64
 
65
  def __enter__(self):
66
  self.start_time = time.time()
 
 
67
  return self
68
 
69
  def __exit__(self, exc_type, exc_value, traceback):
70
  self.end_time = time.time()
71
  self.elapsed_time = self.end_time - self.start_time
 
 
72
  if self.activity_name:
73
  print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
74
  else:
75
  print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
 
76
 
77
 
78
  def calculate_image_dimensions_for_flux(
@@ -147,8 +150,6 @@ def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
147
  def run_flux(
148
  image: Image.Image,
149
  mask: Image.Image,
150
- control_image: Image.Image,
151
- control_mode: int,
152
  prompt: str,
153
  seed_slicer: int,
154
  randomize_seed_checkbox: bool,
@@ -157,28 +158,26 @@ def run_flux(
157
  resolution_wh: Tuple[int, int],
158
  progress
159
  ) -> Image.Image:
160
- print("Running FLUX...")
161
- width, height = resolution_wh
162
- if randomize_seed_checkbox:
163
- seed_slicer = random.randint(0, MAX_SEED)
164
- generator = torch.Generator().manual_seed(seed_slicer)
165
 
166
  with calculateDuration("run pipe"):
167
- print("start to run pipe", prompt)
168
-
 
 
 
 
169
  with torch.inference_mode():
170
  generated_image = pipe(
171
  prompt=prompt,
172
- image=image,
173
  mask_image=mask,
174
- control_image=control_image,
175
- control_mode=control_mode,
176
- controlnet_conditioning_scale=[0.55],
177
  width=width,
178
  height=height,
179
- strength=strength_slider,
 
180
  generator=generator,
181
- num_inference_steps=num_inference_steps_slider,
182
  ).images[0]
183
  progress(99, "Generate image success!")
184
  return generated_image
@@ -209,43 +208,12 @@ def load_loras(lora_strings_json:str):
209
  pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
210
 
211
 
212
- def generate_control_image(orginal_image, mask, control_mode):
213
- # generated control_
214
- with calculateDuration("Generate control image"):
215
- preprocessor = Preprocessor()
216
- if control_mode == "depth":
217
- preprocessor.load("Midas")
218
- control_image = preprocessor(
219
- image=image,
220
- image_resolution=width,
221
- detect_resolution=512,
222
- )
223
- if control_mode == "pose":
224
- preprocessor.load("Openpose")
225
- control_image = preprocessor(
226
- image=image,
227
- hand_and_face=False,
228
- image_resolution=width,
229
- detect_resolution=512,
230
- )
231
- if control_mode == "canny":
232
- preprocessor.load("Canny")
233
- control_image = preprocessor(
234
- image=image,
235
- image_resolution=width,
236
- detect_resolution=512,
237
- )
238
-
239
- control_image = control_image.resize((width, height), Image.LANCZOS)
240
- return control_image
241
-
242
  def process(
243
  image_url: str,
244
  mask_url: str,
245
  inpainting_prompt_text: str,
246
  mask_inflation_slider: int,
247
  mask_blur_slider: int,
248
- control_mode: str,
249
  seed_slicer: int,
250
  randomize_seed_checkbox: bool,
251
  strength_slider: float,
@@ -287,18 +255,13 @@ def process(
287
  mask = mask.resize((width, height), Image.LANCZOS)
288
  mask = process_mask(mask, mask_inflation=mask_inflation_slider, mask_blur=mask_blur_slider)
289
 
290
- control_image = generate_control_image(image, mask, control_mode)
291
- control_mode_id = control_mode_ids[control_mode]
292
- clear_cuda_cache()
293
-
294
  load_loras(lora_strings_json=lora_strings_json)
295
 
296
  try:
297
  generated_image = run_flux(
298
  image=image,
299
  mask=mask,
300
- control_image=control_image,
301
- control_mode=control_mode_id,
302
  prompt=inpainting_prompt_text,
303
  seed_slicer=seed_slicer,
304
  randomize_seed_checkbox=randomize_seed_checkbox,
 
22
 
23
  import json
24
  from preprocessor import Preprocessor
25
+
26
+ # from diffusers.pipelines import FluxControlNetInpaintPipeline
27
+ # from diffusers.models.controlnet_flux import FluxControlNetModel
28
+ # from diffusers import UniPCMultistepScheduler
29
+
30
+ from controlnet_flux import FluxControlNetModel
31
+ from transformer_flux import FluxTransformer2DModel
32
+ from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
33
+
34
 
35
  HF_TOKEN = os.environ.get("HF_TOKEN")
36
 
37
  login(token=HF_TOKEN)
38
 
39
  MAX_SEED = np.iinfo(np.int32).max
40
+ IMAGE_SIZE = 1024
41
 
42
  # init
43
  device = "cuda" if torch.cuda.is_available() else "cpu"
44
  base_model = "black-forest-labs/FLUX.1-dev"
45
 
46
+ controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", torch_dtype=torch.bfloat16)
47
+ transformer = FluxTransformer2DModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16)
 
48
 
49
+ pipe = FluxControlNetInpaintingPipeline.from_pretrained(
50
+ base_model,
51
+ controlnet=controlnet,
52
+ transformer=transformer,
53
+ torch_dtype=torch.bfloat16).to(device)
54
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  def clear_cuda_cache():
57
  torch.cuda.empty_cache()
58
 
 
59
  class calculateDuration:
60
  def __init__(self, activity_name=""):
61
  self.activity_name = activity_name
62
 
63
  def __enter__(self):
64
  self.start_time = time.time()
65
+ self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
66
+ print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
67
  return self
68
 
69
  def __exit__(self, exc_type, exc_value, traceback):
70
  self.end_time = time.time()
71
  self.elapsed_time = self.end_time - self.start_time
72
+ self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
73
+
74
  if self.activity_name:
75
  print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
76
  else:
77
  print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
78
+
79
 
80
 
81
  def calculate_image_dimensions_for_flux(
 
150
  def run_flux(
151
  image: Image.Image,
152
  mask: Image.Image,
 
 
153
  prompt: str,
154
  seed_slicer: int,
155
  randomize_seed_checkbox: bool,
 
158
  resolution_wh: Tuple[int, int],
159
  progress
160
  ) -> Image.Image:
 
 
 
 
 
161
 
162
  with calculateDuration("run pipe"):
163
+ print("start to run pipe", prompt, control_mode)
164
+ # pipe.to(device)
165
+ width, height = resolution_wh
166
+ if randomize_seed_checkbox:
167
+ seed_slicer = random.randint(0, MAX_SEED)
168
+ generator = torch.Generator().manual_seed(seed_slicer)
169
  with torch.inference_mode():
170
  generated_image = pipe(
171
  prompt=prompt,
 
172
  mask_image=mask,
173
+ control_image=image,
174
+ controlnet_conditioning_scale=0.9,
 
175
  width=width,
176
  height=height,
177
+ strength=0.7,
178
+ guidance_scale=3.5,
179
  generator=generator,
180
+ num_inference_steps=28,
181
  ).images[0]
182
  progress(99, "Generate image success!")
183
  return generated_image
 
208
  pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
209
 
210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
  def process(
212
  image_url: str,
213
  mask_url: str,
214
  inpainting_prompt_text: str,
215
  mask_inflation_slider: int,
216
  mask_blur_slider: int,
 
217
  seed_slicer: int,
218
  randomize_seed_checkbox: bool,
219
  strength_slider: float,
 
255
  mask = mask.resize((width, height), Image.LANCZOS)
256
  mask = process_mask(mask, mask_inflation=mask_inflation_slider, mask_blur=mask_blur_slider)
257
 
258
+ # load loras
 
 
 
259
  load_loras(lora_strings_json=lora_strings_json)
260
 
261
  try:
262
  generated_image = run_flux(
263
  image=image,
264
  mask=mask,
 
 
265
  prompt=inpainting_prompt_text,
266
  seed_slicer=seed_slicer,
267
  randomize_seed_checkbox=randomize_seed_checkbox,
controlnet_flux.py ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Any, Dict, List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
8
+ from diffusers.loaders import PeftAdapterMixin
9
+ from diffusers.models.modeling_utils import ModelMixin
10
+ from diffusers.models.attention_processor import AttentionProcessor
11
+ from diffusers.utils import (
12
+ USE_PEFT_BACKEND,
13
+ is_torch_version,
14
+ logging,
15
+ scale_lora_layers,
16
+ unscale_lora_layers,
17
+ )
18
+ from diffusers.models.controlnet import BaseOutput, zero_module
19
+ from diffusers.models.embeddings import (
20
+ CombinedTimestepGuidanceTextProjEmbeddings,
21
+ CombinedTimestepTextProjEmbeddings,
22
+ )
23
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
24
+ from transformer_flux import (
25
+ EmbedND,
26
+ FluxSingleTransformerBlock,
27
+ FluxTransformerBlock,
28
+ )
29
+
30
+
31
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
32
+
33
+
34
+ @dataclass
35
+ class FluxControlNetOutput(BaseOutput):
36
+ controlnet_block_samples: Tuple[torch.Tensor]
37
+ controlnet_single_block_samples: Tuple[torch.Tensor]
38
+
39
+
40
+ class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
41
+ _supports_gradient_checkpointing = True
42
+
43
+ @register_to_config
44
+ def __init__(
45
+ self,
46
+ patch_size: int = 1,
47
+ in_channels: int = 64,
48
+ num_layers: int = 19,
49
+ num_single_layers: int = 38,
50
+ attention_head_dim: int = 128,
51
+ num_attention_heads: int = 24,
52
+ joint_attention_dim: int = 4096,
53
+ pooled_projection_dim: int = 768,
54
+ guidance_embeds: bool = False,
55
+ axes_dims_rope: List[int] = [16, 56, 56],
56
+ extra_condition_channels: int = 1 * 4,
57
+ ):
58
+ super().__init__()
59
+ self.out_channels = in_channels
60
+ self.inner_dim = num_attention_heads * attention_head_dim
61
+
62
+ self.pos_embed = EmbedND(
63
+ dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
64
+ )
65
+ text_time_guidance_cls = (
66
+ CombinedTimestepGuidanceTextProjEmbeddings
67
+ if guidance_embeds
68
+ else CombinedTimestepTextProjEmbeddings
69
+ )
70
+ self.time_text_embed = text_time_guidance_cls(
71
+ embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
72
+ )
73
+
74
+ self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
75
+ self.x_embedder = nn.Linear(in_channels, self.inner_dim)
76
+
77
+ self.transformer_blocks = nn.ModuleList(
78
+ [
79
+ FluxTransformerBlock(
80
+ dim=self.inner_dim,
81
+ num_attention_heads=num_attention_heads,
82
+ attention_head_dim=attention_head_dim,
83
+ )
84
+ for _ in range(num_layers)
85
+ ]
86
+ )
87
+
88
+ self.single_transformer_blocks = nn.ModuleList(
89
+ [
90
+ FluxSingleTransformerBlock(
91
+ dim=self.inner_dim,
92
+ num_attention_heads=num_attention_heads,
93
+ attention_head_dim=attention_head_dim,
94
+ )
95
+ for _ in range(num_single_layers)
96
+ ]
97
+ )
98
+
99
+ # controlnet_blocks
100
+ self.controlnet_blocks = nn.ModuleList([])
101
+ for _ in range(len(self.transformer_blocks)):
102
+ self.controlnet_blocks.append(
103
+ zero_module(nn.Linear(self.inner_dim, self.inner_dim))
104
+ )
105
+
106
+ self.controlnet_single_blocks = nn.ModuleList([])
107
+ for _ in range(len(self.single_transformer_blocks)):
108
+ self.controlnet_single_blocks.append(
109
+ zero_module(nn.Linear(self.inner_dim, self.inner_dim))
110
+ )
111
+
112
+ self.controlnet_x_embedder = zero_module(
113
+ torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)
114
+ )
115
+
116
+ self.gradient_checkpointing = False
117
+
118
+ @property
119
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
120
+ def attn_processors(self):
121
+ r"""
122
+ Returns:
123
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
124
+ indexed by its weight name.
125
+ """
126
+ # set recursively
127
+ processors = {}
128
+
129
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
130
+ if hasattr(module, "get_processor"):
131
+ processors[f"{name}.processor"] = module.get_processor()
132
+
133
+ for sub_name, child in module.named_children():
134
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
135
+
136
+ return processors
137
+
138
+ for name, module in self.named_children():
139
+ fn_recursive_add_processors(name, module, processors)
140
+
141
+ return processors
142
+
143
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
144
+ def set_attn_processor(self, processor):
145
+ r"""
146
+ Sets the attention processor to use to compute attention.
147
+
148
+ Parameters:
149
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
150
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
151
+ for **all** `Attention` layers.
152
+
153
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
154
+ processor. This is strongly recommended when setting trainable attention processors.
155
+
156
+ """
157
+ count = len(self.attn_processors.keys())
158
+
159
+ if isinstance(processor, dict) and len(processor) != count:
160
+ raise ValueError(
161
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
162
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
163
+ )
164
+
165
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
166
+ if hasattr(module, "set_processor"):
167
+ if not isinstance(processor, dict):
168
+ module.set_processor(processor)
169
+ else:
170
+ module.set_processor(processor.pop(f"{name}.processor"))
171
+
172
+ for sub_name, child in module.named_children():
173
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
174
+
175
+ for name, module in self.named_children():
176
+ fn_recursive_attn_processor(name, module, processor)
177
+
178
+ def _set_gradient_checkpointing(self, module, value=False):
179
+ if hasattr(module, "gradient_checkpointing"):
180
+ module.gradient_checkpointing = value
181
+
182
+ @classmethod
183
+ def from_transformer(
184
+ cls,
185
+ transformer,
186
+ num_layers: int = 4,
187
+ num_single_layers: int = 10,
188
+ attention_head_dim: int = 128,
189
+ num_attention_heads: int = 24,
190
+ load_weights_from_transformer=True,
191
+ ):
192
+ config = transformer.config
193
+ config["num_layers"] = num_layers
194
+ config["num_single_layers"] = num_single_layers
195
+ config["attention_head_dim"] = attention_head_dim
196
+ config["num_attention_heads"] = num_attention_heads
197
+
198
+ controlnet = cls(**config)
199
+
200
+ if load_weights_from_transformer:
201
+ controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
202
+ controlnet.time_text_embed.load_state_dict(
203
+ transformer.time_text_embed.state_dict()
204
+ )
205
+ controlnet.context_embedder.load_state_dict(
206
+ transformer.context_embedder.state_dict()
207
+ )
208
+ controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
209
+ controlnet.transformer_blocks.load_state_dict(
210
+ transformer.transformer_blocks.state_dict(), strict=False
211
+ )
212
+ controlnet.single_transformer_blocks.load_state_dict(
213
+ transformer.single_transformer_blocks.state_dict(), strict=False
214
+ )
215
+
216
+ controlnet.controlnet_x_embedder = zero_module(
217
+ controlnet.controlnet_x_embedder
218
+ )
219
+
220
+ return controlnet
221
+
222
+ def forward(
223
+ self,
224
+ hidden_states: torch.Tensor,
225
+ controlnet_cond: torch.Tensor,
226
+ conditioning_scale: float = 1.0,
227
+ encoder_hidden_states: torch.Tensor = None,
228
+ pooled_projections: torch.Tensor = None,
229
+ timestep: torch.LongTensor = None,
230
+ img_ids: torch.Tensor = None,
231
+ txt_ids: torch.Tensor = None,
232
+ guidance: torch.Tensor = None,
233
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
234
+ return_dict: bool = True,
235
+ ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
236
+ """
237
+ The [`FluxTransformer2DModel`] forward method.
238
+
239
+ Args:
240
+ hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
241
+ Input `hidden_states`.
242
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
243
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
244
+ pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
245
+ from the embeddings of input conditions.
246
+ timestep ( `torch.LongTensor`):
247
+ Used to indicate denoising step.
248
+ block_controlnet_hidden_states: (`list` of `torch.Tensor`):
249
+ A list of tensors that if specified are added to the residuals of transformer blocks.
250
+ joint_attention_kwargs (`dict`, *optional*):
251
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
252
+ `self.processor` in
253
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
254
+ return_dict (`bool`, *optional*, defaults to `True`):
255
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
256
+ tuple.
257
+
258
+ Returns:
259
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
260
+ `tuple` where the first element is the sample tensor.
261
+ """
262
+ if joint_attention_kwargs is not None:
263
+ joint_attention_kwargs = joint_attention_kwargs.copy()
264
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
265
+ else:
266
+ lora_scale = 1.0
267
+
268
+ if USE_PEFT_BACKEND:
269
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
270
+ scale_lora_layers(self, lora_scale)
271
+ else:
272
+ if (
273
+ joint_attention_kwargs is not None
274
+ and joint_attention_kwargs.get("scale", None) is not None
275
+ ):
276
+ logger.warning(
277
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
278
+ )
279
+ hidden_states = self.x_embedder(hidden_states)
280
+
281
+ # add condition
282
+ hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
283
+
284
+ timestep = timestep.to(hidden_states.dtype) * 1000
285
+ if guidance is not None:
286
+ guidance = guidance.to(hidden_states.dtype) * 1000
287
+ else:
288
+ guidance = None
289
+ temb = (
290
+ self.time_text_embed(timestep, pooled_projections)
291
+ if guidance is None
292
+ else self.time_text_embed(timestep, guidance, pooled_projections)
293
+ )
294
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
295
+
296
+ txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
297
+ ids = torch.cat((txt_ids, img_ids), dim=1)
298
+ image_rotary_emb = self.pos_embed(ids)
299
+
300
+ block_samples = ()
301
+ for _, block in enumerate(self.transformer_blocks):
302
+ if self.training and self.gradient_checkpointing:
303
+
304
+ def create_custom_forward(module, return_dict=None):
305
+ def custom_forward(*inputs):
306
+ if return_dict is not None:
307
+ return module(*inputs, return_dict=return_dict)
308
+ else:
309
+ return module(*inputs)
310
+
311
+ return custom_forward
312
+
313
+ ckpt_kwargs: Dict[str, Any] = (
314
+ {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
315
+ )
316
+ (
317
+ encoder_hidden_states,
318
+ hidden_states,
319
+ ) = torch.utils.checkpoint.checkpoint(
320
+ create_custom_forward(block),
321
+ hidden_states,
322
+ encoder_hidden_states,
323
+ temb,
324
+ image_rotary_emb,
325
+ **ckpt_kwargs,
326
+ )
327
+
328
+ else:
329
+ encoder_hidden_states, hidden_states = block(
330
+ hidden_states=hidden_states,
331
+ encoder_hidden_states=encoder_hidden_states,
332
+ temb=temb,
333
+ image_rotary_emb=image_rotary_emb,
334
+ )
335
+ block_samples = block_samples + (hidden_states,)
336
+
337
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
338
+
339
+ single_block_samples = ()
340
+ for _, block in enumerate(self.single_transformer_blocks):
341
+ if self.training and self.gradient_checkpointing:
342
+
343
+ def create_custom_forward(module, return_dict=None):
344
+ def custom_forward(*inputs):
345
+ if return_dict is not None:
346
+ return module(*inputs, return_dict=return_dict)
347
+ else:
348
+ return module(*inputs)
349
+
350
+ return custom_forward
351
+
352
+ ckpt_kwargs: Dict[str, Any] = (
353
+ {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
354
+ )
355
+ hidden_states = torch.utils.checkpoint.checkpoint(
356
+ create_custom_forward(block),
357
+ hidden_states,
358
+ temb,
359
+ image_rotary_emb,
360
+ **ckpt_kwargs,
361
+ )
362
+
363
+ else:
364
+ hidden_states = block(
365
+ hidden_states=hidden_states,
366
+ temb=temb,
367
+ image_rotary_emb=image_rotary_emb,
368
+ )
369
+ single_block_samples = single_block_samples + (
370
+ hidden_states[:, encoder_hidden_states.shape[1] :],
371
+ )
372
+
373
+ # controlnet block
374
+ controlnet_block_samples = ()
375
+ for block_sample, controlnet_block in zip(
376
+ block_samples, self.controlnet_blocks
377
+ ):
378
+ block_sample = controlnet_block(block_sample)
379
+ controlnet_block_samples = controlnet_block_samples + (block_sample,)
380
+
381
+ controlnet_single_block_samples = ()
382
+ for single_block_sample, controlnet_block in zip(
383
+ single_block_samples, self.controlnet_single_blocks
384
+ ):
385
+ single_block_sample = controlnet_block(single_block_sample)
386
+ controlnet_single_block_samples = controlnet_single_block_samples + (
387
+ single_block_sample,
388
+ )
389
+
390
+ # scaling
391
+ controlnet_block_samples = [
392
+ sample * conditioning_scale for sample in controlnet_block_samples
393
+ ]
394
+ controlnet_single_block_samples = [
395
+ sample * conditioning_scale for sample in controlnet_single_block_samples
396
+ ]
397
+
398
+ #
399
+ controlnet_block_samples = (
400
+ None if len(controlnet_block_samples) == 0 else controlnet_block_samples
401
+ )
402
+ controlnet_single_block_samples = (
403
+ None
404
+ if len(controlnet_single_block_samples) == 0
405
+ else controlnet_single_block_samples
406
+ )
407
+
408
+ if USE_PEFT_BACKEND:
409
+ # remove `lora_scale` from each PEFT layer
410
+ unscale_lora_layers(self, lora_scale)
411
+
412
+ if not return_dict:
413
+ return (controlnet_block_samples, controlnet_single_block_samples)
414
+
415
+ return FluxControlNetOutput(
416
+ controlnet_block_samples=controlnet_block_samples,
417
+ controlnet_single_block_samples=controlnet_single_block_samples,
418
+ )
pipeline_flux_controlnet_inpaint.py ADDED
@@ -0,0 +1,1046 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ from transformers import (
7
+ CLIPTextModel,
8
+ CLIPTokenizer,
9
+ T5EncoderModel,
10
+ T5TokenizerFast,
11
+ )
12
+
13
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
14
+ from diffusers.loaders import FluxLoraLoaderMixin
15
+ from diffusers.models.autoencoders import AutoencoderKL
16
+
17
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
18
+ from diffusers.utils import (
19
+ USE_PEFT_BACKEND,
20
+ is_torch_xla_available,
21
+ logging,
22
+ replace_example_docstring,
23
+ scale_lora_layers,
24
+ unscale_lora_layers,
25
+ )
26
+ from diffusers.utils.torch_utils import randn_tensor
27
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
28
+ from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
29
+
30
+ from transformer_flux import FluxTransformer2DModel
31
+ from controlnet_flux import FluxControlNetModel
32
+
33
+ if is_torch_xla_available():
34
+ import torch_xla.core.xla_model as xm
35
+
36
+ XLA_AVAILABLE = True
37
+ else:
38
+ XLA_AVAILABLE = False
39
+
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+ EXAMPLE_DOC_STRING = """
44
+ Examples:
45
+ ```py
46
+ >>> import torch
47
+ >>> from diffusers.utils import load_image
48
+ >>> from diffusers import FluxControlNetPipeline
49
+ >>> from diffusers import FluxControlNetModel
50
+
51
+ >>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny-alpha"
52
+ >>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
53
+ >>> pipe = FluxControlNetPipeline.from_pretrained(
54
+ ... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
55
+ ... )
56
+ >>> pipe.to("cuda")
57
+ >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
58
+ >>> control_mask = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
59
+ >>> prompt = "A girl in city, 25 years old, cool, futuristic"
60
+ >>> image = pipe(
61
+ ... prompt,
62
+ ... control_image=control_image,
63
+ ... controlnet_conditioning_scale=0.6,
64
+ ... num_inference_steps=28,
65
+ ... guidance_scale=3.5,
66
+ ... ).images[0]
67
+ >>> image.save("flux.png")
68
+ ```
69
+ """
70
+
71
+
72
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
73
+ def calculate_shift(
74
+ image_seq_len,
75
+ base_seq_len: int = 256,
76
+ max_seq_len: int = 4096,
77
+ base_shift: float = 0.5,
78
+ max_shift: float = 1.16,
79
+ ):
80
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
81
+ b = base_shift - m * base_seq_len
82
+ mu = image_seq_len * m + b
83
+ return mu
84
+
85
+
86
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
87
+ def retrieve_timesteps(
88
+ scheduler,
89
+ num_inference_steps: Optional[int] = None,
90
+ device: Optional[Union[str, torch.device]] = None,
91
+ timesteps: Optional[List[int]] = None,
92
+ sigmas: Optional[List[float]] = None,
93
+ **kwargs,
94
+ ):
95
+ """
96
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
97
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
98
+
99
+ Args:
100
+ scheduler (`SchedulerMixin`):
101
+ The scheduler to get timesteps from.
102
+ num_inference_steps (`int`):
103
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
104
+ must be `None`.
105
+ device (`str` or `torch.device`, *optional*):
106
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
107
+ timesteps (`List[int]`, *optional*):
108
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
109
+ `num_inference_steps` and `sigmas` must be `None`.
110
+ sigmas (`List[float]`, *optional*):
111
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
112
+ `num_inference_steps` and `timesteps` must be `None`.
113
+
114
+ Returns:
115
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
116
+ second element is the number of inference steps.
117
+ """
118
+ if timesteps is not None and sigmas is not None:
119
+ raise ValueError(
120
+ "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
121
+ )
122
+ if timesteps is not None:
123
+ accepts_timesteps = "timesteps" in set(
124
+ inspect.signature(scheduler.set_timesteps).parameters.keys()
125
+ )
126
+ if not accepts_timesteps:
127
+ raise ValueError(
128
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
129
+ f" timestep schedules. Please check whether you are using the correct scheduler."
130
+ )
131
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ num_inference_steps = len(timesteps)
134
+ elif sigmas is not None:
135
+ accept_sigmas = "sigmas" in set(
136
+ inspect.signature(scheduler.set_timesteps).parameters.keys()
137
+ )
138
+ if not accept_sigmas:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ else:
147
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
148
+ timesteps = scheduler.timesteps
149
+ return timesteps, num_inference_steps
150
+
151
+
152
+ class FluxControlNetInpaintingPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
153
+ r"""
154
+ The Flux pipeline for text-to-image generation.
155
+
156
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
157
+
158
+ Args:
159
+ transformer ([`FluxTransformer2DModel`]):
160
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
161
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
162
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
163
+ vae ([`AutoencoderKL`]):
164
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
165
+ text_encoder ([`CLIPTextModel`]):
166
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
167
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
168
+ text_encoder_2 ([`T5EncoderModel`]):
169
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
170
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
171
+ tokenizer (`CLIPTokenizer`):
172
+ Tokenizer of class
173
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
174
+ tokenizer_2 (`T5TokenizerFast`):
175
+ Second Tokenizer of class
176
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
177
+ """
178
+
179
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
180
+ _optional_components = []
181
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
182
+
183
+ def __init__(
184
+ self,
185
+ scheduler: FlowMatchEulerDiscreteScheduler,
186
+ vae: AutoencoderKL,
187
+ text_encoder: CLIPTextModel,
188
+ tokenizer: CLIPTokenizer,
189
+ text_encoder_2: T5EncoderModel,
190
+ tokenizer_2: T5TokenizerFast,
191
+ transformer: FluxTransformer2DModel,
192
+ controlnet: FluxControlNetModel,
193
+ ):
194
+ super().__init__()
195
+
196
+ self.register_modules(
197
+ vae=vae,
198
+ text_encoder=text_encoder,
199
+ text_encoder_2=text_encoder_2,
200
+ tokenizer=tokenizer,
201
+ tokenizer_2=tokenizer_2,
202
+ transformer=transformer,
203
+ scheduler=scheduler,
204
+ controlnet=controlnet,
205
+ )
206
+ self.vae_scale_factor = (
207
+ 2 ** (len(self.vae.config.block_out_channels))
208
+ if hasattr(self, "vae") and self.vae is not None
209
+ else 16
210
+ )
211
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_rgb=True, do_normalize=True)
212
+ self.mask_processor = VaeImageProcessor(
213
+ vae_scale_factor=self.vae_scale_factor,
214
+ do_resize=True,
215
+ do_convert_grayscale=True,
216
+ do_normalize=False,
217
+ do_binarize=True,
218
+ )
219
+ self.tokenizer_max_length = (
220
+ self.tokenizer.model_max_length
221
+ if hasattr(self, "tokenizer") and self.tokenizer is not None
222
+ else 77
223
+ )
224
+ self.default_sample_size = 64
225
+
226
+ @property
227
+ def do_classifier_free_guidance(self):
228
+ return self._guidance_scale > 1
229
+
230
+ def _get_t5_prompt_embeds(
231
+ self,
232
+ prompt: Union[str, List[str]] = None,
233
+ num_images_per_prompt: int = 1,
234
+ max_sequence_length: int = 512,
235
+ device: Optional[torch.device] = None,
236
+ dtype: Optional[torch.dtype] = None,
237
+ ):
238
+ device = device or self._execution_device
239
+ dtype = dtype or self.text_encoder.dtype
240
+
241
+ prompt = [prompt] if isinstance(prompt, str) else prompt
242
+ batch_size = len(prompt)
243
+
244
+ text_inputs = self.tokenizer_2(
245
+ prompt,
246
+ padding="max_length",
247
+ max_length=max_sequence_length,
248
+ truncation=True,
249
+ return_length=False,
250
+ return_overflowing_tokens=False,
251
+ return_tensors="pt",
252
+ )
253
+ text_input_ids = text_inputs.input_ids
254
+ untruncated_ids = self.tokenizer_2(
255
+ prompt, padding="longest", return_tensors="pt"
256
+ ).input_ids
257
+
258
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
259
+ text_input_ids, untruncated_ids
260
+ ):
261
+ removed_text = self.tokenizer_2.batch_decode(
262
+ untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
263
+ )
264
+ logger.warning(
265
+ "The following part of your input was truncated because `max_sequence_length` is set to "
266
+ f" {max_sequence_length} tokens: {removed_text}"
267
+ )
268
+
269
+ prompt_embeds = self.text_encoder_2(
270
+ text_input_ids.to(device), output_hidden_states=False
271
+ )[0]
272
+
273
+ dtype = self.text_encoder_2.dtype
274
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
275
+
276
+ _, seq_len, _ = prompt_embeds.shape
277
+
278
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
279
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
280
+ prompt_embeds = prompt_embeds.view(
281
+ batch_size * num_images_per_prompt, seq_len, -1
282
+ )
283
+
284
+ return prompt_embeds
285
+
286
+ def _get_clip_prompt_embeds(
287
+ self,
288
+ prompt: Union[str, List[str]],
289
+ num_images_per_prompt: int = 1,
290
+ device: Optional[torch.device] = None,
291
+ ):
292
+ device = device or self._execution_device
293
+
294
+ prompt = [prompt] if isinstance(prompt, str) else prompt
295
+ batch_size = len(prompt)
296
+
297
+ text_inputs = self.tokenizer(
298
+ prompt,
299
+ padding="max_length",
300
+ max_length=self.tokenizer_max_length,
301
+ truncation=True,
302
+ return_overflowing_tokens=False,
303
+ return_length=False,
304
+ return_tensors="pt",
305
+ )
306
+
307
+ text_input_ids = text_inputs.input_ids
308
+ untruncated_ids = self.tokenizer(
309
+ prompt, padding="longest", return_tensors="pt"
310
+ ).input_ids
311
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
312
+ text_input_ids, untruncated_ids
313
+ ):
314
+ removed_text = self.tokenizer.batch_decode(
315
+ untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
316
+ )
317
+ logger.warning(
318
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
319
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
320
+ )
321
+ prompt_embeds = self.text_encoder(
322
+ text_input_ids.to(device), output_hidden_states=False
323
+ )
324
+
325
+ # Use pooled output of CLIPTextModel
326
+ prompt_embeds = prompt_embeds.pooler_output
327
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
328
+
329
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
330
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
331
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
332
+
333
+ return prompt_embeds
334
+
335
+ def encode_prompt(
336
+ self,
337
+ prompt: Union[str, List[str]],
338
+ prompt_2: Union[str, List[str]],
339
+ device: Optional[torch.device] = None,
340
+ num_images_per_prompt: int = 1,
341
+ do_classifier_free_guidance: bool = True,
342
+ negative_prompt: Optional[Union[str, List[str]]] = None,
343
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
344
+ prompt_embeds: Optional[torch.FloatTensor] = None,
345
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
346
+ max_sequence_length: int = 512,
347
+ lora_scale: Optional[float] = None,
348
+ ):
349
+ r"""
350
+
351
+ Args:
352
+ prompt (`str` or `List[str]`, *optional*):
353
+ prompt to be encoded
354
+ prompt_2 (`str` or `List[str]`, *optional*):
355
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
356
+ used in all text-encoders
357
+ device: (`torch.device`):
358
+ torch device
359
+ num_images_per_prompt (`int`):
360
+ number of images that should be generated per prompt
361
+ do_classifier_free_guidance (`bool`):
362
+ whether to use classifier-free guidance or not
363
+ negative_prompt (`str` or `List[str]`, *optional*):
364
+ negative prompt to be encoded
365
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
366
+ negative prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is
367
+ used in all text-encoders
368
+ prompt_embeds (`torch.FloatTensor`, *optional*):
369
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
370
+ provided, text embeddings will be generated from `prompt` input argument.
371
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
372
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
373
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
374
+ clip_skip (`int`, *optional*):
375
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
376
+ the output of the pre-final layer will be used for computing the prompt embeddings.
377
+ lora_scale (`float`, *optional*):
378
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
379
+ """
380
+ device = device or self._execution_device
381
+
382
+ # set lora scale so that monkey patched LoRA
383
+ # function of text encoder can correctly access it
384
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
385
+ self._lora_scale = lora_scale
386
+
387
+ # dynamically adjust the LoRA scale
388
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
389
+ scale_lora_layers(self.text_encoder, lora_scale)
390
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
391
+ scale_lora_layers(self.text_encoder_2, lora_scale)
392
+
393
+ prompt = [prompt] if isinstance(prompt, str) else prompt
394
+ if prompt is not None:
395
+ batch_size = len(prompt)
396
+ else:
397
+ batch_size = prompt_embeds.shape[0]
398
+
399
+ if prompt_embeds is None:
400
+ prompt_2 = prompt_2 or prompt
401
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
402
+
403
+ # We only use the pooled prompt output from the CLIPTextModel
404
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
405
+ prompt=prompt,
406
+ device=device,
407
+ num_images_per_prompt=num_images_per_prompt,
408
+ )
409
+ prompt_embeds = self._get_t5_prompt_embeds(
410
+ prompt=prompt_2,
411
+ num_images_per_prompt=num_images_per_prompt,
412
+ max_sequence_length=max_sequence_length,
413
+ device=device,
414
+ )
415
+
416
+ if do_classifier_free_guidance:
417
+ # 处理 negative prompt
418
+ negative_prompt = negative_prompt or ""
419
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
420
+
421
+ negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
422
+ negative_prompt,
423
+ device=device,
424
+ num_images_per_prompt=num_images_per_prompt,
425
+ )
426
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
427
+ negative_prompt_2,
428
+ num_images_per_prompt=num_images_per_prompt,
429
+ max_sequence_length=max_sequence_length,
430
+ device=device,
431
+ )
432
+
433
+ if self.text_encoder is not None:
434
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
435
+ # Retrieve the original scale by scaling back the LoRA layers
436
+ unscale_lora_layers(self.text_encoder, lora_scale)
437
+
438
+ if self.text_encoder_2 is not None:
439
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
440
+ # Retrieve the original scale by scaling back the LoRA layers
441
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
442
+
443
+ text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(
444
+ device=device, dtype=self.text_encoder.dtype
445
+ )
446
+
447
+ return prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds,text_ids
448
+
449
+ def check_inputs(
450
+ self,
451
+ prompt,
452
+ prompt_2,
453
+ height,
454
+ width,
455
+ prompt_embeds=None,
456
+ pooled_prompt_embeds=None,
457
+ callback_on_step_end_tensor_inputs=None,
458
+ max_sequence_length=None,
459
+ ):
460
+ if height % 8 != 0 or width % 8 != 0:
461
+ raise ValueError(
462
+ f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
463
+ )
464
+
465
+ if callback_on_step_end_tensor_inputs is not None and not all(
466
+ k in self._callback_tensor_inputs
467
+ for k in callback_on_step_end_tensor_inputs
468
+ ):
469
+ raise ValueError(
470
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
471
+ )
472
+
473
+ if prompt is not None and prompt_embeds is not None:
474
+ raise ValueError(
475
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
476
+ " only forward one of the two."
477
+ )
478
+ elif prompt_2 is not None and prompt_embeds is not None:
479
+ raise ValueError(
480
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
481
+ " only forward one of the two."
482
+ )
483
+ elif prompt is None and prompt_embeds is None:
484
+ raise ValueError(
485
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
486
+ )
487
+ elif prompt is not None and (
488
+ not isinstance(prompt, str) and not isinstance(prompt, list)
489
+ ):
490
+ raise ValueError(
491
+ f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
492
+ )
493
+ elif prompt_2 is not None and (
494
+ not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
495
+ ):
496
+ raise ValueError(
497
+ f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
498
+ )
499
+
500
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
501
+ raise ValueError(
502
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
503
+ )
504
+
505
+ if max_sequence_length is not None and max_sequence_length > 512:
506
+ raise ValueError(
507
+ f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}"
508
+ )
509
+
510
+ # Copied from diffusers.pipelines.flux.pipeline_flux._prepare_latent_image_ids
511
+ @staticmethod
512
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
513
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
514
+ latent_image_ids[..., 1] = (
515
+ latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
516
+ )
517
+ latent_image_ids[..., 2] = (
518
+ latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
519
+ )
520
+
521
+ (
522
+ latent_image_id_height,
523
+ latent_image_id_width,
524
+ latent_image_id_channels,
525
+ ) = latent_image_ids.shape
526
+
527
+ latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
528
+ latent_image_ids = latent_image_ids.reshape(
529
+ batch_size,
530
+ latent_image_id_height * latent_image_id_width,
531
+ latent_image_id_channels,
532
+ )
533
+
534
+ return latent_image_ids.to(device=device, dtype=dtype)
535
+
536
+ # Copied from diffusers.pipelines.flux.pipeline_flux._pack_latents
537
+ @staticmethod
538
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
539
+ latents = latents.view(
540
+ batch_size, num_channels_latents, height // 2, 2, width // 2, 2
541
+ )
542
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
543
+ latents = latents.reshape(
544
+ batch_size, (height // 2) * (width // 2), num_channels_latents * 4
545
+ )
546
+
547
+ return latents
548
+
549
+ # Copied from diffusers.pipelines.flux.pipeline_flux._unpack_latents
550
+ @staticmethod
551
+ def _unpack_latents(latents, height, width, vae_scale_factor):
552
+ batch_size, num_patches, channels = latents.shape
553
+
554
+ height = height // vae_scale_factor
555
+ width = width // vae_scale_factor
556
+
557
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
558
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
559
+
560
+ latents = latents.reshape(
561
+ batch_size, channels // (2 * 2), height * 2, width * 2
562
+ )
563
+
564
+ return latents
565
+
566
+ # Copied from diffusers.pipelines.flux.pipeline_flux.prepare_latents
567
+ def prepare_latents(
568
+ self,
569
+ batch_size,
570
+ num_channels_latents,
571
+ height,
572
+ width,
573
+ dtype,
574
+ device,
575
+ generator,
576
+ latents=None,
577
+ ):
578
+ height = 2 * (int(height) // self.vae_scale_factor)
579
+ width = 2 * (int(width) // self.vae_scale_factor)
580
+
581
+ shape = (batch_size, num_channels_latents, height, width)
582
+
583
+ if latents is not None:
584
+ latent_image_ids = self._prepare_latent_image_ids(
585
+ batch_size, height, width, device, dtype
586
+ )
587
+ return latents.to(device=device, dtype=dtype), latent_image_ids
588
+
589
+ if isinstance(generator, list) and len(generator) != batch_size:
590
+ raise ValueError(
591
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
592
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
593
+ )
594
+
595
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
596
+ latents = self._pack_latents(
597
+ latents, batch_size, num_channels_latents, height, width
598
+ )
599
+
600
+ latent_image_ids = self._prepare_latent_image_ids(
601
+ batch_size, height, width, device, dtype
602
+ )
603
+
604
+ return latents, latent_image_ids
605
+
606
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
607
+ def prepare_image(
608
+ self,
609
+ image,
610
+ width,
611
+ height,
612
+ batch_size,
613
+ num_images_per_prompt,
614
+ device,
615
+ dtype,
616
+ ):
617
+ if isinstance(image, torch.Tensor):
618
+ pass
619
+ else:
620
+ image = self.image_processor.preprocess(image, height=height, width=width)
621
+
622
+ image_batch_size = image.shape[0]
623
+
624
+ if image_batch_size == 1:
625
+ repeat_by = batch_size
626
+ else:
627
+ # image batch size is the same as prompt batch size
628
+ repeat_by = num_images_per_prompt
629
+
630
+ image = image.repeat_interleave(repeat_by, dim=0)
631
+
632
+ image = image.to(device=device, dtype=dtype)
633
+
634
+ return image
635
+
636
+ def prepare_image_with_mask(
637
+ self,
638
+ image,
639
+ mask,
640
+ width,
641
+ height,
642
+ batch_size,
643
+ num_images_per_prompt,
644
+ device,
645
+ dtype,
646
+ do_classifier_free_guidance = False,
647
+ ):
648
+ # Prepare image
649
+ if isinstance(image, torch.Tensor):
650
+ pass
651
+ else:
652
+ image = self.image_processor.preprocess(image, height=height, width=width)
653
+
654
+ image_batch_size = image.shape[0]
655
+ if image_batch_size == 1:
656
+ repeat_by = batch_size
657
+ else:
658
+ # image batch size is the same as prompt batch size
659
+ repeat_by = num_images_per_prompt
660
+ image = image.repeat_interleave(repeat_by, dim=0)
661
+ image = image.to(device=device, dtype=dtype)
662
+
663
+ # Prepare mask
664
+ if isinstance(mask, torch.Tensor):
665
+ pass
666
+ else:
667
+ mask = self.mask_processor.preprocess(mask, height=height, width=width)
668
+ mask = mask.repeat_interleave(repeat_by, dim=0)
669
+ mask = mask.to(device=device, dtype=dtype)
670
+
671
+ # Get masked image
672
+ masked_image = image.clone()
673
+ masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1
674
+
675
+ # Encode to latents
676
+ image_latents = self.vae.encode(masked_image.to(self.vae.dtype)).latent_dist.sample()
677
+ image_latents = (
678
+ image_latents - self.vae.config.shift_factor
679
+ ) * self.vae.config.scaling_factor
680
+ image_latents = image_latents.to(dtype)
681
+
682
+ mask = torch.nn.functional.interpolate(
683
+ mask, size=(height // self.vae_scale_factor * 2, width // self.vae_scale_factor * 2)
684
+ )
685
+ mask = 1 - mask
686
+
687
+ control_image = torch.cat([image_latents, mask], dim=1)
688
+
689
+ # Pack cond latents
690
+ packed_control_image = self._pack_latents(
691
+ control_image,
692
+ batch_size * num_images_per_prompt,
693
+ control_image.shape[1],
694
+ control_image.shape[2],
695
+ control_image.shape[3],
696
+ )
697
+
698
+ if do_classifier_free_guidance:
699
+ packed_control_image = torch.cat([packed_control_image] * 2)
700
+
701
+ return packed_control_image, height, width
702
+
703
+ @property
704
+ def guidance_scale(self):
705
+ return self._guidance_scale
706
+
707
+ @property
708
+ def joint_attention_kwargs(self):
709
+ return self._joint_attention_kwargs
710
+
711
+ @property
712
+ def num_timesteps(self):
713
+ return self._num_timesteps
714
+
715
+ @property
716
+ def interrupt(self):
717
+ return self._interrupt
718
+
719
+ @torch.no_grad()
720
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
721
+ def __call__(
722
+ self,
723
+ prompt: Union[str, List[str]] = None,
724
+ prompt_2: Optional[Union[str, List[str]]] = None,
725
+ height: Optional[int] = None,
726
+ width: Optional[int] = None,
727
+ num_inference_steps: int = 28,
728
+ timesteps: List[int] = None,
729
+ guidance_scale: float = 7.0,
730
+ true_guidance_scale: float = 3.5 ,
731
+ negative_prompt: Optional[Union[str, List[str]]] = None,
732
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
733
+ control_image: PipelineImageInput = None,
734
+ control_mask: PipelineImageInput = None,
735
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
736
+ num_images_per_prompt: Optional[int] = 1,
737
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
738
+ latents: Optional[torch.FloatTensor] = None,
739
+ prompt_embeds: Optional[torch.FloatTensor] = None,
740
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
741
+ output_type: Optional[str] = "pil",
742
+ return_dict: bool = True,
743
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
744
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
745
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
746
+ max_sequence_length: int = 512,
747
+ ):
748
+ r"""
749
+ Function invoked when calling the pipeline for generation.
750
+
751
+ Args:
752
+ prompt (`str` or `List[str]`, *optional*):
753
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
754
+ instead.
755
+ prompt_2 (`str` or `List[str]`, *optional*):
756
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
757
+ will be used instead
758
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
759
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
760
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
761
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
762
+ num_inference_steps (`int`, *optional*, defaults to 50):
763
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
764
+ expense of slower inference.
765
+ timesteps (`List[int]`, *optional*):
766
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
767
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
768
+ passed will be used. Must be in descending order.
769
+ guidance_scale (`float`, *optional*, defaults to 7.0):
770
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
771
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
772
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
773
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
774
+ usually at the expense of lower image quality.
775
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
776
+ The number of images to generate per prompt.
777
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
778
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
779
+ to make generation deterministic.
780
+ latents (`torch.FloatTensor`, *optional*):
781
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
782
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
783
+ tensor will ge generated by sampling using the supplied random `generator`.
784
+ prompt_embeds (`torch.FloatTensor`, *optional*):
785
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
786
+ provided, text embeddings will be generated from `prompt` input argument.
787
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
788
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
789
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
790
+ output_type (`str`, *optional*, defaults to `"pil"`):
791
+ The output format of the generate image. Choose between
792
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
793
+ return_dict (`bool`, *optional*, defaults to `True`):
794
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
795
+ joint_attention_kwargs (`dict`, *optional*):
796
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
797
+ `self.processor` in
798
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
799
+ callback_on_step_end (`Callable`, *optional*):
800
+ A function that calls at the end of each denoising steps during the inference. The function is called
801
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
802
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
803
+ `callback_on_step_end_tensor_inputs`.
804
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
805
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
806
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
807
+ `._callback_tensor_inputs` attribute of your pipeline class.
808
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
809
+
810
+ Examples:
811
+
812
+ Returns:
813
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
814
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
815
+ images.
816
+ """
817
+
818
+ height = height or self.default_sample_size * self.vae_scale_factor
819
+ width = width or self.default_sample_size * self.vae_scale_factor
820
+
821
+ # 1. Check inputs. Raise error if not correct
822
+ self.check_inputs(
823
+ prompt,
824
+ prompt_2,
825
+ height,
826
+ width,
827
+ prompt_embeds=prompt_embeds,
828
+ pooled_prompt_embeds=pooled_prompt_embeds,
829
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
830
+ max_sequence_length=max_sequence_length,
831
+ )
832
+
833
+ self._guidance_scale = true_guidance_scale
834
+ self._joint_attention_kwargs = joint_attention_kwargs
835
+ self._interrupt = False
836
+
837
+ # 2. Define call parameters
838
+ if prompt is not None and isinstance(prompt, str):
839
+ batch_size = 1
840
+ elif prompt is not None and isinstance(prompt, list):
841
+ batch_size = len(prompt)
842
+ else:
843
+ batch_size = prompt_embeds.shape[0]
844
+
845
+ device = self._execution_device
846
+ dtype = self.transformer.dtype
847
+
848
+ lora_scale = (
849
+ self.joint_attention_kwargs.get("scale", None)
850
+ if self.joint_attention_kwargs is not None
851
+ else None
852
+ )
853
+ (
854
+ prompt_embeds,
855
+ pooled_prompt_embeds,
856
+ negative_prompt_embeds,
857
+ negative_pooled_prompt_embeds,
858
+ text_ids
859
+ ) = self.encode_prompt(
860
+ prompt=prompt,
861
+ prompt_2=prompt_2,
862
+ prompt_embeds=prompt_embeds,
863
+ pooled_prompt_embeds=pooled_prompt_embeds,
864
+ do_classifier_free_guidance = self.do_classifier_free_guidance,
865
+ negative_prompt = negative_prompt,
866
+ negative_prompt_2 = negative_prompt_2,
867
+ device=device,
868
+ num_images_per_prompt=num_images_per_prompt,
869
+ max_sequence_length=max_sequence_length,
870
+ lora_scale=lora_scale,
871
+ )
872
+
873
+ # 在 encode_prompt 之后
874
+ if self.do_classifier_free_guidance:
875
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim = 0)
876
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim = 0)
877
+ text_ids = torch.cat([text_ids, text_ids], dim = 0)
878
+
879
+ # 3. Prepare control image
880
+ num_channels_latents = self.transformer.config.in_channels // 4
881
+ if isinstance(self.controlnet, FluxControlNetModel):
882
+ control_image, height, width = self.prepare_image_with_mask(
883
+ image=control_image,
884
+ mask=control_mask,
885
+ width=width,
886
+ height=height,
887
+ batch_size=batch_size * num_images_per_prompt,
888
+ num_images_per_prompt=num_images_per_prompt,
889
+ device=device,
890
+ dtype=dtype,
891
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
892
+ )
893
+
894
+ # 4. Prepare latent variables
895
+ num_channels_latents = self.transformer.config.in_channels // 4
896
+ latents, latent_image_ids = self.prepare_latents(
897
+ batch_size * num_images_per_prompt,
898
+ num_channels_latents,
899
+ height,
900
+ width,
901
+ prompt_embeds.dtype,
902
+ device,
903
+ generator,
904
+ latents,
905
+ )
906
+
907
+ if self.do_classifier_free_guidance:
908
+ latent_image_ids = torch.cat([latent_image_ids] * 2)
909
+
910
+ # 5. Prepare timesteps
911
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
912
+ image_seq_len = latents.shape[1]
913
+ mu = calculate_shift(
914
+ image_seq_len,
915
+ self.scheduler.config.base_image_seq_len,
916
+ self.scheduler.config.max_image_seq_len,
917
+ self.scheduler.config.base_shift,
918
+ self.scheduler.config.max_shift,
919
+ )
920
+ timesteps, num_inference_steps = retrieve_timesteps(
921
+ self.scheduler,
922
+ num_inference_steps,
923
+ device,
924
+ timesteps,
925
+ sigmas,
926
+ mu=mu,
927
+ )
928
+
929
+ num_warmup_steps = max(
930
+ len(timesteps) - num_inference_steps * self.scheduler.order, 0
931
+ )
932
+ self._num_timesteps = len(timesteps)
933
+
934
+ # 6. Denoising loop
935
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
936
+ for i, t in enumerate(timesteps):
937
+ if self.interrupt:
938
+ continue
939
+
940
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
941
+
942
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
943
+ timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
944
+
945
+ # handle guidance
946
+ if self.transformer.config.guidance_embeds:
947
+ guidance = torch.tensor([guidance_scale], device=device)
948
+ guidance = guidance.expand(latent_model_input.shape[0])
949
+ else:
950
+ guidance = None
951
+
952
+ # controlnet
953
+ (
954
+ controlnet_block_samples,
955
+ controlnet_single_block_samples,
956
+ ) = self.controlnet(
957
+ hidden_states=latent_model_input,
958
+ controlnet_cond=control_image,
959
+ conditioning_scale=controlnet_conditioning_scale,
960
+ timestep=timestep / 1000,
961
+ guidance=guidance,
962
+ pooled_projections=pooled_prompt_embeds,
963
+ encoder_hidden_states=prompt_embeds,
964
+ txt_ids=text_ids,
965
+ img_ids=latent_image_ids,
966
+ joint_attention_kwargs=self.joint_attention_kwargs,
967
+ return_dict=False,
968
+ )
969
+
970
+ noise_pred = self.transformer(
971
+ hidden_states=latent_model_input,
972
+ # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
973
+ timestep=timestep / 1000,
974
+ guidance=guidance,
975
+ pooled_projections=pooled_prompt_embeds,
976
+ encoder_hidden_states=prompt_embeds,
977
+ controlnet_block_samples=[
978
+ sample.to(dtype=self.transformer.dtype)
979
+ for sample in controlnet_block_samples
980
+ ],
981
+ controlnet_single_block_samples=[
982
+ sample.to(dtype=self.transformer.dtype)
983
+ for sample in controlnet_single_block_samples
984
+ ] if controlnet_single_block_samples is not None else controlnet_single_block_samples,
985
+ txt_ids=text_ids,
986
+ img_ids=latent_image_ids,
987
+ joint_attention_kwargs=self.joint_attention_kwargs,
988
+ return_dict=False,
989
+ )[0]
990
+
991
+ # 在生成循环中
992
+ if self.do_classifier_free_guidance:
993
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
994
+ noise_pred = noise_pred_uncond + true_guidance_scale * (noise_pred_text - noise_pred_uncond)
995
+
996
+ # compute the previous noisy sample x_t -> x_t-1
997
+ latents_dtype = latents.dtype
998
+ latents = self.scheduler.step(
999
+ noise_pred, t, latents, return_dict=False
1000
+ )[0]
1001
+
1002
+ if latents.dtype != latents_dtype:
1003
+ if torch.backends.mps.is_available():
1004
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1005
+ latents = latents.to(latents_dtype)
1006
+
1007
+ if callback_on_step_end is not None:
1008
+ callback_kwargs = {}
1009
+ for k in callback_on_step_end_tensor_inputs:
1010
+ callback_kwargs[k] = locals()[k]
1011
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1012
+
1013
+ latents = callback_outputs.pop("latents", latents)
1014
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1015
+
1016
+ # call the callback, if provided
1017
+ if i == len(timesteps) - 1 or (
1018
+ (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
1019
+ ):
1020
+ progress_bar.update()
1021
+
1022
+ if XLA_AVAILABLE:
1023
+ xm.mark_step()
1024
+
1025
+ if output_type == "latent":
1026
+ image = latents
1027
+
1028
+ else:
1029
+ latents = self._unpack_latents(
1030
+ latents, height, width, self.vae_scale_factor
1031
+ )
1032
+ latents = (
1033
+ latents / self.vae.config.scaling_factor
1034
+ ) + self.vae.config.shift_factor
1035
+ latents = latents.to(self.vae.dtype)
1036
+
1037
+ image = self.vae.decode(latents, return_dict=False)[0]
1038
+ image = self.image_processor.postprocess(image, output_type=output_type)
1039
+
1040
+ # Offload all models
1041
+ self.maybe_free_model_hooks()
1042
+
1043
+ if not return_dict:
1044
+ return (image,)
1045
+
1046
+ return FluxPipelineOutput(images=image)
requirements.txt CHANGED
@@ -7,7 +7,7 @@ einops
7
  spaces
8
  gradio
9
  opencv-python
10
- git+https://github.com/diffusers/diffusers.git
11
  boto3
12
  sentencepiece
13
  peft
 
7
  spaces
8
  gradio
9
  opencv-python
10
+ git+https://github.com/huggingface/diffusers.git
11
  boto3
12
  sentencepiece
13
  peft
transformer_flux.py ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List, Optional, Union
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
9
+ from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
10
+ from diffusers.models.attention import FeedForward
11
+ from diffusers.models.attention_processor import (
12
+ Attention,
13
+ FluxAttnProcessor2_0,
14
+ FluxSingleAttnProcessor2_0,
15
+ )
16
+ from diffusers.models.modeling_utils import ModelMixin
17
+ from diffusers.models.normalization import (
18
+ AdaLayerNormContinuous,
19
+ AdaLayerNormZero,
20
+ AdaLayerNormZeroSingle,
21
+ )
22
+ from diffusers.utils import (
23
+ USE_PEFT_BACKEND,
24
+ is_torch_version,
25
+ logging,
26
+ scale_lora_layers,
27
+ unscale_lora_layers,
28
+ )
29
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
30
+ from diffusers.models.embeddings import (
31
+ CombinedTimestepGuidanceTextProjEmbeddings,
32
+ CombinedTimestepTextProjEmbeddings,
33
+ )
34
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
35
+
36
+
37
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
+
39
+
40
+ # YiYi to-do: refactor rope related functions/classes
41
+ def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
42
+ assert dim % 2 == 0, "The dimension must be even."
43
+
44
+ scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
45
+ omega = 1.0 / (theta**scale)
46
+
47
+ batch_size, seq_length = pos.shape
48
+ out = torch.einsum("...n,d->...nd", pos, omega)
49
+ cos_out = torch.cos(out)
50
+ sin_out = torch.sin(out)
51
+
52
+ stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
53
+ out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
54
+ return out.float()
55
+
56
+
57
+ # YiYi to-do: refactor rope related functions/classes
58
+ class EmbedND(nn.Module):
59
+ def __init__(self, dim: int, theta: int, axes_dim: List[int]):
60
+ super().__init__()
61
+ self.dim = dim
62
+ self.theta = theta
63
+ self.axes_dim = axes_dim
64
+
65
+ def forward(self, ids: torch.Tensor) -> torch.Tensor:
66
+ n_axes = ids.shape[-1]
67
+ emb = torch.cat(
68
+ [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
69
+ dim=-3,
70
+ )
71
+ return emb.unsqueeze(1)
72
+
73
+
74
+ @maybe_allow_in_graph
75
+ class FluxSingleTransformerBlock(nn.Module):
76
+ r"""
77
+ A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
78
+
79
+ Reference: https://arxiv.org/abs/2403.03206
80
+
81
+ Parameters:
82
+ dim (`int`): The number of channels in the input and output.
83
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
84
+ attention_head_dim (`int`): The number of channels in each head.
85
+ context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
86
+ processing of `context` conditions.
87
+ """
88
+
89
+ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
90
+ super().__init__()
91
+ self.mlp_hidden_dim = int(dim * mlp_ratio)
92
+
93
+ self.norm = AdaLayerNormZeroSingle(dim)
94
+ self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
95
+ self.act_mlp = nn.GELU(approximate="tanh")
96
+ self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
97
+
98
+ processor = FluxSingleAttnProcessor2_0()
99
+ self.attn = Attention(
100
+ query_dim=dim,
101
+ cross_attention_dim=None,
102
+ dim_head=attention_head_dim,
103
+ heads=num_attention_heads,
104
+ out_dim=dim,
105
+ bias=True,
106
+ processor=processor,
107
+ qk_norm="rms_norm",
108
+ eps=1e-6,
109
+ pre_only=True,
110
+ )
111
+
112
+ def forward(
113
+ self,
114
+ hidden_states: torch.FloatTensor,
115
+ temb: torch.FloatTensor,
116
+ image_rotary_emb=None,
117
+ ):
118
+ residual = hidden_states
119
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
120
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
121
+
122
+ attn_output = self.attn(
123
+ hidden_states=norm_hidden_states,
124
+ image_rotary_emb=image_rotary_emb,
125
+ )
126
+
127
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
128
+ gate = gate.unsqueeze(1)
129
+ hidden_states = gate * self.proj_out(hidden_states)
130
+ hidden_states = residual + hidden_states
131
+ if hidden_states.dtype == torch.float16:
132
+ hidden_states = hidden_states.clip(-65504, 65504)
133
+
134
+ return hidden_states
135
+
136
+
137
+ @maybe_allow_in_graph
138
+ class FluxTransformerBlock(nn.Module):
139
+ r"""
140
+ A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
141
+
142
+ Reference: https://arxiv.org/abs/2403.03206
143
+
144
+ Parameters:
145
+ dim (`int`): The number of channels in the input and output.
146
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
147
+ attention_head_dim (`int`): The number of channels in each head.
148
+ context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
149
+ processing of `context` conditions.
150
+ """
151
+
152
+ def __init__(
153
+ self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
154
+ ):
155
+ super().__init__()
156
+
157
+ self.norm1 = AdaLayerNormZero(dim)
158
+
159
+ self.norm1_context = AdaLayerNormZero(dim)
160
+
161
+ if hasattr(F, "scaled_dot_product_attention"):
162
+ processor = FluxAttnProcessor2_0()
163
+ else:
164
+ raise ValueError(
165
+ "The current PyTorch version does not support the `scaled_dot_product_attention` function."
166
+ )
167
+ self.attn = Attention(
168
+ query_dim=dim,
169
+ cross_attention_dim=None,
170
+ added_kv_proj_dim=dim,
171
+ dim_head=attention_head_dim,
172
+ heads=num_attention_heads,
173
+ out_dim=dim,
174
+ context_pre_only=False,
175
+ bias=True,
176
+ processor=processor,
177
+ qk_norm=qk_norm,
178
+ eps=eps,
179
+ )
180
+
181
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
182
+ self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
183
+
184
+ self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
185
+ self.ff_context = FeedForward(
186
+ dim=dim, dim_out=dim, activation_fn="gelu-approximate"
187
+ )
188
+
189
+ # let chunk size default to None
190
+ self._chunk_size = None
191
+ self._chunk_dim = 0
192
+
193
+ def forward(
194
+ self,
195
+ hidden_states: torch.FloatTensor,
196
+ encoder_hidden_states: torch.FloatTensor,
197
+ temb: torch.FloatTensor,
198
+ image_rotary_emb=None,
199
+ ):
200
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
201
+ hidden_states, emb=temb
202
+ )
203
+
204
+ (
205
+ norm_encoder_hidden_states,
206
+ c_gate_msa,
207
+ c_shift_mlp,
208
+ c_scale_mlp,
209
+ c_gate_mlp,
210
+ ) = self.norm1_context(encoder_hidden_states, emb=temb)
211
+
212
+ # Attention.
213
+ attn_output, context_attn_output = self.attn(
214
+ hidden_states=norm_hidden_states,
215
+ encoder_hidden_states=norm_encoder_hidden_states,
216
+ image_rotary_emb=image_rotary_emb,
217
+ )
218
+
219
+ # Process attention outputs for the `hidden_states`.
220
+ attn_output = gate_msa.unsqueeze(1) * attn_output
221
+ hidden_states = hidden_states + attn_output
222
+
223
+ norm_hidden_states = self.norm2(hidden_states)
224
+ norm_hidden_states = (
225
+ norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
226
+ )
227
+
228
+ ff_output = self.ff(norm_hidden_states)
229
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
230
+
231
+ hidden_states = hidden_states + ff_output
232
+
233
+ # Process attention outputs for the `encoder_hidden_states`.
234
+
235
+ context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
236
+ encoder_hidden_states = encoder_hidden_states + context_attn_output
237
+
238
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
239
+ norm_encoder_hidden_states = (
240
+ norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
241
+ + c_shift_mlp[:, None]
242
+ )
243
+
244
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
245
+ encoder_hidden_states = (
246
+ encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
247
+ )
248
+ if encoder_hidden_states.dtype == torch.float16:
249
+ encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
250
+
251
+ return encoder_hidden_states, hidden_states
252
+
253
+
254
+ class FluxTransformer2DModel(
255
+ ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
256
+ ):
257
+ """
258
+ The Transformer model introduced in Flux.
259
+
260
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
261
+
262
+ Parameters:
263
+ patch_size (`int`): Patch size to turn the input data into small patches.
264
+ in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
265
+ num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
266
+ num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
267
+ attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
268
+ num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
269
+ joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
270
+ pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
271
+ guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
272
+ """
273
+
274
+ _supports_gradient_checkpointing = True
275
+
276
+ @register_to_config
277
+ def __init__(
278
+ self,
279
+ patch_size: int = 1,
280
+ in_channels: int = 64,
281
+ num_layers: int = 19,
282
+ num_single_layers: int = 38,
283
+ attention_head_dim: int = 128,
284
+ num_attention_heads: int = 24,
285
+ joint_attention_dim: int = 4096,
286
+ pooled_projection_dim: int = 768,
287
+ guidance_embeds: bool = False,
288
+ axes_dims_rope: List[int] = [16, 56, 56],
289
+ ):
290
+ super().__init__()
291
+ self.out_channels = in_channels
292
+ self.inner_dim = (
293
+ self.config.num_attention_heads * self.config.attention_head_dim
294
+ )
295
+
296
+ self.pos_embed = EmbedND(
297
+ dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
298
+ )
299
+ text_time_guidance_cls = (
300
+ CombinedTimestepGuidanceTextProjEmbeddings
301
+ if guidance_embeds
302
+ else CombinedTimestepTextProjEmbeddings
303
+ )
304
+ self.time_text_embed = text_time_guidance_cls(
305
+ embedding_dim=self.inner_dim,
306
+ pooled_projection_dim=self.config.pooled_projection_dim,
307
+ )
308
+
309
+ self.context_embedder = nn.Linear(
310
+ self.config.joint_attention_dim, self.inner_dim
311
+ )
312
+ self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
313
+
314
+ self.transformer_blocks = nn.ModuleList(
315
+ [
316
+ FluxTransformerBlock(
317
+ dim=self.inner_dim,
318
+ num_attention_heads=self.config.num_attention_heads,
319
+ attention_head_dim=self.config.attention_head_dim,
320
+ )
321
+ for i in range(self.config.num_layers)
322
+ ]
323
+ )
324
+
325
+ self.single_transformer_blocks = nn.ModuleList(
326
+ [
327
+ FluxSingleTransformerBlock(
328
+ dim=self.inner_dim,
329
+ num_attention_heads=self.config.num_attention_heads,
330
+ attention_head_dim=self.config.attention_head_dim,
331
+ )
332
+ for i in range(self.config.num_single_layers)
333
+ ]
334
+ )
335
+
336
+ self.norm_out = AdaLayerNormContinuous(
337
+ self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
338
+ )
339
+ self.proj_out = nn.Linear(
340
+ self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
341
+ )
342
+
343
+ self.gradient_checkpointing = False
344
+
345
+ def _set_gradient_checkpointing(self, module, value=False):
346
+ if hasattr(module, "gradient_checkpointing"):
347
+ module.gradient_checkpointing = value
348
+
349
+ def forward(
350
+ self,
351
+ hidden_states: torch.Tensor,
352
+ encoder_hidden_states: torch.Tensor = None,
353
+ pooled_projections: torch.Tensor = None,
354
+ timestep: torch.LongTensor = None,
355
+ img_ids: torch.Tensor = None,
356
+ txt_ids: torch.Tensor = None,
357
+ guidance: torch.Tensor = None,
358
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
359
+ controlnet_block_samples=None,
360
+ controlnet_single_block_samples=None,
361
+ return_dict: bool = True,
362
+ ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
363
+ """
364
+ The [`FluxTransformer2DModel`] forward method.
365
+
366
+ Args:
367
+ hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
368
+ Input `hidden_states`.
369
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
370
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
371
+ pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
372
+ from the embeddings of input conditions.
373
+ timestep ( `torch.LongTensor`):
374
+ Used to indicate denoising step.
375
+ block_controlnet_hidden_states: (`list` of `torch.Tensor`):
376
+ A list of tensors that if specified are added to the residuals of transformer blocks.
377
+ joint_attention_kwargs (`dict`, *optional*):
378
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
379
+ `self.processor` in
380
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
381
+ return_dict (`bool`, *optional*, defaults to `True`):
382
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
383
+ tuple.
384
+
385
+ Returns:
386
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
387
+ `tuple` where the first element is the sample tensor.
388
+ """
389
+ if joint_attention_kwargs is not None:
390
+ joint_attention_kwargs = joint_attention_kwargs.copy()
391
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
392
+ else:
393
+ lora_scale = 1.0
394
+
395
+ if USE_PEFT_BACKEND:
396
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
397
+ scale_lora_layers(self, lora_scale)
398
+ else:
399
+ if (
400
+ joint_attention_kwargs is not None
401
+ and joint_attention_kwargs.get("scale", None) is not None
402
+ ):
403
+ logger.warning(
404
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
405
+ )
406
+ hidden_states = self.x_embedder(hidden_states)
407
+
408
+ timestep = timestep.to(hidden_states.dtype) * 1000
409
+ if guidance is not None:
410
+ guidance = guidance.to(hidden_states.dtype) * 1000
411
+ else:
412
+ guidance = None
413
+ temb = (
414
+ self.time_text_embed(timestep, pooled_projections)
415
+ if guidance is None
416
+ else self.time_text_embed(timestep, guidance, pooled_projections)
417
+ )
418
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
419
+
420
+ txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
421
+ ids = torch.cat((txt_ids, img_ids), dim=1)
422
+ image_rotary_emb = self.pos_embed(ids)
423
+
424
+ for index_block, block in enumerate(self.transformer_blocks):
425
+ if self.training and self.gradient_checkpointing:
426
+
427
+ def create_custom_forward(module, return_dict=None):
428
+ def custom_forward(*inputs):
429
+ if return_dict is not None:
430
+ return module(*inputs, return_dict=return_dict)
431
+ else:
432
+ return module(*inputs)
433
+
434
+ return custom_forward
435
+
436
+ ckpt_kwargs: Dict[str, Any] = (
437
+ {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
438
+ )
439
+ (
440
+ encoder_hidden_states,
441
+ hidden_states,
442
+ ) = torch.utils.checkpoint.checkpoint(
443
+ create_custom_forward(block),
444
+ hidden_states,
445
+ encoder_hidden_states,
446
+ temb,
447
+ image_rotary_emb,
448
+ **ckpt_kwargs,
449
+ )
450
+
451
+ else:
452
+ encoder_hidden_states, hidden_states = block(
453
+ hidden_states=hidden_states,
454
+ encoder_hidden_states=encoder_hidden_states,
455
+ temb=temb,
456
+ image_rotary_emb=image_rotary_emb,
457
+ )
458
+
459
+ # controlnet residual
460
+ if controlnet_block_samples is not None:
461
+ interval_control = len(self.transformer_blocks) / len(
462
+ controlnet_block_samples
463
+ )
464
+ interval_control = int(np.ceil(interval_control))
465
+ hidden_states = (
466
+ hidden_states
467
+ + controlnet_block_samples[index_block // interval_control]
468
+ )
469
+
470
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
471
+
472
+ for index_block, block in enumerate(self.single_transformer_blocks):
473
+ if self.training and self.gradient_checkpointing:
474
+
475
+ def create_custom_forward(module, return_dict=None):
476
+ def custom_forward(*inputs):
477
+ if return_dict is not None:
478
+ return module(*inputs, return_dict=return_dict)
479
+ else:
480
+ return module(*inputs)
481
+
482
+ return custom_forward
483
+
484
+ ckpt_kwargs: Dict[str, Any] = (
485
+ {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
486
+ )
487
+ hidden_states = torch.utils.checkpoint.checkpoint(
488
+ create_custom_forward(block),
489
+ hidden_states,
490
+ temb,
491
+ image_rotary_emb,
492
+ **ckpt_kwargs,
493
+ )
494
+
495
+ else:
496
+ hidden_states = block(
497
+ hidden_states=hidden_states,
498
+ temb=temb,
499
+ image_rotary_emb=image_rotary_emb,
500
+ )
501
+
502
+ # controlnet residual
503
+ if controlnet_single_block_samples is not None:
504
+ interval_control = len(self.single_transformer_blocks) / len(
505
+ controlnet_single_block_samples
506
+ )
507
+ interval_control = int(np.ceil(interval_control))
508
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
509
+ hidden_states[:, encoder_hidden_states.shape[1] :, ...]
510
+ + controlnet_single_block_samples[index_block // interval_control]
511
+ )
512
+
513
+ hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
514
+
515
+ hidden_states = self.norm_out(hidden_states, temb)
516
+ output = self.proj_out(hidden_states)
517
+
518
+ if USE_PEFT_BACKEND:
519
+ # remove `lora_scale` from each PEFT layer
520
+ unscale_lora_layers(self, lora_scale)
521
+
522
+ if not return_dict:
523
+ return (output,)
524
+
525
+ return Transformer2DModelOutput(sample=output)