import os from typing import Union, Any, Tuple, Dict from unittest.mock import patch import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor from transformers.dynamic_module_utils import get_imports # FLORENCE_CHECKPOINT = "microsoft/Florence-2-base" FLORENCE_CHECKPOINT = "microsoft/Florence-2-large-ft" FLORENCE_OBJECT_DETECTION_TASK = '' FLORENCE_DETAILED_CAPTION_TASK = '' FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '' FLORENCE_OPEN_VOCABULARY_DETECTION_TASK = '' FLORENCE_DENSE_REGION_CAPTION_TASK = '' def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]: """Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72.""" if not str(filename).endswith("/modeling_florence2.py"): return get_imports(filename) imports = get_imports(filename) imports.remove("flash_attn") return imports def load_florence_model( device: torch.device, checkpoint: str = FLORENCE_CHECKPOINT ) -> Tuple[Any, Any]: with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device).eval() processor = AutoProcessor.from_pretrained(checkpoint, trust_remote_code=True) return model, processor def run_florence_inference( model: Any, processor: Any, device: torch.device, image: Image, task: str, text: str = None ) -> Tuple[str, Dict]: if text: prompt = task + text else: prompt = task inputs = processor(text=prompt, images=image, return_tensors="pt").to(device) generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] response = processor.post_process_generation(generated_text, task=task, image_size=image.size) print("run_florence_inference", "finish", generated_text, response) return generated_text, response